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Abstract

Consider the initial-boundary value problem for the degenerate
Kirchhoff type wave equation with strong dissipation :

ρ
∂2u

∂t2
−
(∫

Ω

|∇u(x, t)|2 dx
)
∆u− δ∆

∂u

∂t
= 0. For all t ≥ 0, a lower

decay estimate of the solution ∥∇u(t)∥2 ≥ c (1 + t)−1 is derived
when either the coefficient ρ or the initial data are appropriately
smaller than the coefficient δ.
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1 Introduction

We consider the initial-boundary value problem for the following degenerate
wave equation of Kirchhoff type with a strong dissipative term :

ρ
∂2u

∂t2
−
(∫

Ω

|∇u(x, t)|2 dx
)
∆u− δ∆

∂u

∂t
= 0 in Ω× [0,+∞) (1)

with the initial and boundary conditions

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = u1(x) in Ω

and

u(x, t) = 0 on ∂Ω× [0,+∞) ,
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where Ω is a bounded domain in RN with smooth boundary ∂Ω, ∆ = ∇ · ∇ =∑N
j=1 ∂

2/∂x2
j is the Laplace operator, ρ > 0 and δ > 0 are constants.

Matos and Pereira [1] have shown the existence of a unique global so-
lution u(t) in the class L∞(0, T ;H1

0 (Ω)) ∩ W 1,∞(0, T ;L2(Ω)) with u′(t) ∈
L2(0, T ;H1

0 (Ω)) for any T > 0, under the assumption that the initial data
{u0, u1} belong to H1

0 (Ω)×L2(Ω). Moreover, by using the energy method, the
energy decay estimate has been derived :

E(t) ≡ ρ∥ut∥2 +
1

2
∥∇u(t)∥4 ≤ C(1 + t)−2

for t ≥ 0, where ut = ∂u/∂t and ∥ · ∥ is the norm of L2(Ω) (see [1, 3, 6]).
Concerning other upper decay estimates of the solution u(t), in previous

paper [6], we have already derived that

∥∇ut(t)∥2 ≤ C(1 + t)−3 and ∥utt(t)∥2 ≤ C(1 + t)−5

for t ≥ 0, under the assumption that the initial data {u0, u1} belong to(
H2(Ω) ∩H1

0 (Ω)
)
×

(
H2(Ω) ∩H1

0 (Ω)
)
.

On the other hand, Nishihara [4] have derived a lower decay estimate of
the solution u(t) : If the initial data {u0, u1} belong to

(
H3(Ω) ∩H1

0 (Ω)
)
×(

H3(Ω) ∩H1
0 (Ω)

)
and satisfy ∥∇u0∥2 + 2ρ(u0, u1) > 0 and the initial energy

E(0) ≡ ρ∥u1∥2+
1

2
∥∇u0∥4 is sufficiently small, there exists a large time T∗ > 0

such that

∥∇u(t)∥2 ≥ c (1 + t)−1 for t ≥ T∗ (2)

with c > 0 (also see [2, 5, 6]).
Our purpose in this paper is to derive the lower decay estimate (2) for all

t ≥ 0 and to give a sufficient condition related to the size of the coefficient ρ
and the initial data {u0, u1} together with the coefficient δ.

We put

c∗ ≡ sup

{
∥v∥
∥∇v∥

∣∣∣ v ∈ H1
0 (Ω) , v ̸= 0

}
.

Our main result is as follows.

Theorem 1.1 Let the initial data {u0, u1} belong to H1
0 (Ω) × H1

0 (Ω) and
u0 ̸= 0. Suppose that

(3c∗)
2ρ

(
ρ
∥∇u1∥2

∥∇u0∥2
+ ∥∇u0∥2

)
< δ2 . (3)

Then, the solution u(t) of (1) satisfies

c (1 + t)−1 ≤ ∥∇u(t)∥2 ≤ C(1 + t)−1 for t ≥ 0 (4)

where c and C are positive constants depending on the initial data {u0, u1}.



The proof of Theorem 1.1 is given by using Proposition 2.1 and Proposition
2.2 in the next section.

The notations we use in this paper are standard. The symbol ( · , · ) means
the inner product in L2(Ω). Positive constants will be denoted by C and will
change from line to line.

2 Lower decay

Proposition 2.1 Let u(t) be a solution of (1) and M(t) ≡ ∥∇u(t)∥2 > 0 for
0 ≤ t < T . If c∗(ρH(0))1/2 < δ, then it holds that

H(t) ≤ H(0) for 0 ≤ t < T (5)

where

H(t) ≡ ρ
∥ut(t)∥2

M(t)
+M(t) .

Proof. Multiplying (1) by 2ut(t) and M(t)−1, and integrating it over Ω, we
have that

d

dt
H(t) + 2δ

∥∇ut(t)∥2

M(t)
= −ρ

M ′(t)

M(t)2
∥ut(t)∥2

≤ 2c∗ρ

(
∥ut(t)∥2

M(t)

)1/2 ∥∇ut(t)∥2

M(t)

≤ 2c∗ (ρH(t))
1/2 ∥∇ut(t)∥2

M(t)

and from the Young inequality that

d

dt
H(t) + 2

(
δ − c∗(ρH(t))1/2

) ∥∇ut(t)∥2

M(t)
≤ 0

for 0 ≤ t < T .
If c∗(ρH(0))1/2 < δ, then we obtain

c∗(ρH(t))1/2 ≤ δ

for some t > 0, and

d

dt
H(t) ≤ 0 or H(t) ≤ H(0)

for some t > 0. Thus we arrive at the desired estimate (5) for 0 ≤ t < T . �



Proposition 2.2 Let u(t) be a solution of (1) and M(t) > 0 for 0 ≤ t < T .
If 3c∗(ρH(0))1/2 < δ, then

M(t) ≡ ∥∇u(t)∥2 ≥ c (1 + t)−1 (6)

for 0 ≤ t < T , where c is a positive constant depending on {u0, u1} ∈ H1
0 (Ω)×

H1
0 (Ω).

Proof. Multiplying (1) by 2ut(t) and M(t)−3, and integrating it over Ω, we
have that

d

dt

(
ρ
∥ut(t)∥2

M(t)3
+

1

M(t)

)
+ 2δ

∥∇ut(t)∥2

M(t)3

= −3ρ
M ′(t)

M(t)4
∥ut(t)∥2 − 2

M ′(t)

M(t)2

≤ 6c∗ρ

(
∥ut(t)∥2

M(t)

)1/2 ∥∇ut(t)∥2

M(t)3
+ 4

(
∥∇ut(t)∥2

M(t)3

)1/2

≤ 6c∗ (ρH(t))
1/2 ∥∇ut(t)∥2

M(t)3
+ 4

(
∥∇ut(t)∥2

M(t)3

)1/2

and from (5) that

d

dt

(
ρ
∥ut(t)∥2

M(t)3
+

1

M(t)

)
+ 2

(
δ − 3c∗(ρH(0))1/2

) ∥∇ut(t)∥2

M(t)3

≤ 4

(
∥∇ut(t)∥2

M(t)3

)1/2

(7)

for 0 ≤ t < T .
If 3c∗(ρH(0))1/2 < δ, then we observe from (7) together with the Young

inequality that

d

dt

(
ρ
∥ut(t)∥2

M(t)3
+

1

M(t)

)
≤ C

and

ρ
∥ut(t)∥2

M(t)3
+

1

M(t)
≤ C(1 + t)

for 0 ≤ t < T which gives the desired estimate (6). �

Proof of Theorem 1.1. Since M(0) ≡ ∥∇u0∥2 > 0, putting

T ≡ sup
{
t ∈ [0,+∞)

∣∣ M(s) > 0 for 0 ≤ s < t
}
,



we see that T > 0 and M(t) > 0 for 0 ≤ t < T . If T < +∞, then it
holds that M(T ) = 0. However, from the lower estimate (6) we observe that
limt→T M(t) ≥ c (1 + T )−1 > 0, and hence, we obtain that T = +∞ and

M(t) > 0 for all t ≥ 0 .

Thus, from (6) we have

M(t) ≡ ∥∇u(t)∥2 ≥ c (1 + t)−1

for t ≥ 0. On the other hand, by the standard energy method, we have

E(t) ≡ ∥ut(t)∥2 +
1

2
∥∇u(t)∥4 ≤ C(1 + t)−2

for t ≥ 0 where C is a positive constant depending on {u0, u1} ∈ H1
0 (Ω)×L2(Ω).
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