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Abstract

In our previous papers, we have generalized Goggins’s formula
given in [1] into two different directions [2] and [3]. In this paper,
we shall give a more generalized formula which combine the results
in [2] and those in [3]. Our formula (6) involves our previous results
(4), (5) and also Goggins’s formula (1) as its special cases. Further-
more we shall give another formula (8) which is a generalization of
a formula obtained in [2] too.
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ondary 40A05

Introduction

In [1], J. G. Goggins has shown the following formula
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1= > tan~'(1/Fany1),
n=1



where F), is the nth Fibonacci number. Since F} = 1 and /4 = tan~!(1/F}),
(1) is equivalent to the following formula

™

9 Ztan_l(l/anH), (2)
n=0
From the fact F_o;_1 = Fa41, (2) is also equivalent to the following formula

= Z tan™!(1/Fy,41). (3)

n=—oo

In our previous paper [2], we have generalized this formula (3) to the following
formula which holds for any integer k,

kr= > tan™ ! (Fa/Fant1). (4)

n=—oo

In our previous paper [3], we gave the following formula which is another gen-
eralization of (2) for Lucas sequences
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PR Ztanfl(t/wnﬂ), ()

=0

where w,, is the Lucas sequences associated to the parameter (¢, —1). Namely
t is a positive integer with initial terms uy = 0,u; = 1 satisfying the binary
recurrence sequence t, = tu,_1 + t,_z for any n € Z.

In this paper, we shall combine the formulas (4) and (5). Actually we shall
prove the following formula which holds for any integer k,

km = Z tan ™! (uok /Ugni1). (6)

n=—oo

In our paper [3], we have also proved the following formula,

gz 3 tan ! (t/vsn). (7)

n=—oo

Let k be any odd integer. In the last section, we shall generalize this formula
(7) to the following formula

I%T: Z tan ™! (vy, /van ). (8)

n=—oo

Here we note that one can verify (7) is the special case t = vy, i.e., k = 1 of
this formula (8).



1 Formulas for Lucas sequences

Let ¢ be a positive integer and {G,,} be a binary recurrence sequence which
satisfies

Gry2 = tGny1 + Go.

Using the induction on m, one can easily show the following addition theorem
of Gy. Though one can see the proofs of this addition formula in [2] or [4], we
will give a following simple proof for the sake of completeness of this paper.

Addition Theorem.

Gmtt = UmGerp1+um—1Ge, for any integer m.

Proof. Since ug =0, u_1 = u; = 1, one can easily see that this formula is true
for the cases m = 0 and m = 1. Assume the formula is true for the cases m
and m — 1. Then we have

Grmtit4e = 1Gmie + G144

= t(umGes1 + Um-1Gr) + (Um—1Grq1 + Um—2Gy)

= (tum + um—l)G€+1 + (tum—l + um—2)G€~ = um+1G€+l + umGZ~
Thus we have verified that the formula is true for the case m + 1.
Conversely, we know

Gm72+l = Gm+£ - tGmfl%»K

= (UmGeg1 + Um—1Gr) — t(Um—1Grp1 + Um—2Gy)

= (U — tUm—1)Grs1 + (Um—1 — tUm—2)Gr. = Um—2Gry1 + Um—3Gy.
Thus we have verified that the formula is also true for the case m — 2, which
completes the proof of the addition theorem.

Substituting Gy4+1 — G¢—1 for tGy, we have
tGmtt = tumGeg1 +Um—1(Gog1 —Geo1) = (ttm+Um—1)Gop1 —Um—1Gr—1

= Um41Gor1 — Um—1Go_1.
Thus we have obtained a modified version of this addition theorem.

Corollary 1. tGpy¢ = Um4+1Gr41—Upm—1Ge—1, for any integer m.

Let us consider the special case when G = u and £ is even and m is odd in
Corollary 1. Put ¢/ = 2n and m = 2k — 1. Then we can write tusyyop—1 =
UgkU2n+1 — U2k—2U2p—1. Lhus we have shown:

Corollary 2. tug,or—1+U2k—2U2n—1 = U2kU2p11-

Let us consider the special case when G = u, { = 2n and m = —2n — 2k + 2 in



Corollary 1. Then we can show

tu_opt2 = U_2pn 2k13U2n+1 — U—2n—2k+1U2n—1,
which is equivalent to

—lugk—2 = Ugn+42k—3U2n+1 — U2n+2k—1U2n—1-

Thus we have shown the following corollary.

Corollary 3. Ugpyor—1U2n—1 — tU2k—2 = U2n42k—3U2n+1-
Using these corollaries, we can show the following proposition.
Proposition 1.

_ U2k —2 _ t _ U2k
tan 1()+tan < )—tan <)
U2n+2k—1 U2n—1 U2n+2k—3

Proof. From Corollaries 2 and 3, we have

Uk—2 l
Uont2k—1 Uzp—1 _ U2k—2U2p—1 + tUopj2k—1 U2k U2n+1
1— bugk—2 U2p2k—1U2n—1 — tU2k—2  U2ni2k—3U2n+1
U2n42k—1U2n—1
. U2k
Ugn+2k—3

which completes the proof.

This proposition and the fact liI}:l tan™ ! (tgm /ugni1) = 0 for any fixed m

n— oo
imply that
o0 o0 o0
U — t U
Z tan~! <2k2> + Z tan~! < > = Z tan~! (2k> .
ne—oo U2n+1 ne—o0o U2n—1 ne—o0o U2n+1

Put A(k) = Z tan™! ( U2k ) Then the above relation can be rewritten

U2n—
n=-—00 2n—1

h Ak — 1) + A(1) = A(k).

Here we note that us = ¢ by definition and A(1) = 7 from the formula (5).
Therefore, using the induction on k, we can obtain the first formula (6) as
follows.

Theorem 1. With the above notations, we have

oo
Z tan_l(UQk/u2n+1) = km,

n=—oo



or equivalently

[ee]

k
Z tan " (ugy, /uant1) = %, for any fixed integer k.
n=0

Remark 1. From the facts u_s, = —ug, and tan~!(—z) = —tan~1(x), we
can see

oo
Z tan™ ' (ugx /ug,) = 0, where n runs all the integers except 0.

n—=—oo

Combining this fact and the above theorem, we have a modified version of the
above formula

Z tan~! (ugy,/un) = km, where n runs all integers # 0.

n=—oo

2 A formula for companion Lucas sequences

In the following, we shall restrict ourselves to the special case when k is
an odd positive integer at first. Put Ba,(k) = tan~!(vg/ve,) and fo,_ 1 =
tan~!(2/va,_1) for any index n. Then we can show the following proposition.

Proposition 2. For any integer n > 1,
2090 (k) = Bon—1 — Bon+1, for the case 2n >k + 1,
and

202n (k) = 7+ Bon—1 — Ban+1, for the case 2 < 2n < k — 1.

Proof. We have 2/ 2/ 2 )
Von—k — Von+k Von+k — U2n—k
tan(Ban—k — Bontk) = = .

( " n ) 1 + 4/(U2n7kv2n+k) Von+kV2n—k + 4

By virtue of Binet’s formula, we have

Vonik — Von—k = (€2n+k + §2n+k) _ (EQn—k + §2n—k) — (5271 + an)(Ek + &:k)
= VkV2n,

where we used the elementary fact k% = (—1)F = —1.
We also have
Von 4 kV2n—k 4 4 = (€2n+k + §2n+k)(€2n—k + §2n—k) + 4
= (et etn) — (24 2F) 4= (e et +2) — (P + e -2)
= (" +&)? — (F + &%) =03, — 0}
On the other hand, we }/1ave )
Vg /V2n + Uk /V2n 20502p
tan(262n(k)) - 1— ('Uk/'UZn)2 - 'U2n2 —
Thus we have shown tan(fBa,—r — B2ntr) = tan(202,(k)).

3 -



Hence we have 2085, (k) = B2n—k — Bantk + mm for some integer m.
Since 0 < P2, (k) < /2 and |B2,—1] < 7/2 for any n, we have more precisely

202, (k) = Bon—k — Bon+k, for the case 2n >k + 1,
and
2B (k) = ™+ Pan—k — Bon+k, for the case 2 <2n <k —1,

which completes the proof of the proposition.

Then, from the facts v_q,, = va, and v_g,_1 = —v2,41, We have
o0 o0
E tanfl(vk/vgn) = tanfl(vk/vo) + E Qtanfl(vk/vgn)
n=-—oo n=1

= tan~" (v /2) + Z 2020 (k)

= tan!(vg/2) + (k= )7/2+ Y (Ban—k — Bon+r)
n=1
=tan"!(vg/2) + (k — 1)7/2
F(B——2) + Bty + -+ B+ B+ A+ Broa+ Br_2) + B
+(Br+2 — Br+2) + (Bkta — Bira) + -+ (Bet2n — Brtan) +-
=tan"!(vi/2) + (k — 1)7/2 + By
=tan" (v, /2) + (k — 1)m/2 + tan=1(2/vy,) = km /2.
Thus we have shown the formula (8) for the case when k is an odd positive
integer.

Now we shall verify the case when k is an odd negative integer. We note that
v_ = —vg for any odd integer k. Hence, for any odd negative integer k, we
can also verify the formula (8) reduing the positive case —k as follows.

Z tan™! (v /van) = Z tan™ ' (—v_j,/v2n)

> _ —km km
Theorem 2. With the above notations, we have

- k
Z tan™ ! (vg, /van) = %, for any odd integer k.

n—=—oo

Remark 2. From the fact v_o,_1 = —v2,11(# 0), we have the following
formula



Z tan™ ! (vg, /vans1) = 0.

n—=—oo

Combining the above theorem and this result, we can give another modified
version of the formula (8) as follows

Z tan™ ! (vg,/v,) = %T, for any odd integer k. 9)

n=—oo
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