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Abstract

I'studied the cancepts of differentiahility, derivatives and partial deriva-
tives as the fundamental concepts of differential calculus in Ito [4], [5].

In this paper, we study the fundamental properties of derivatives and
partial derivatives of elassical functions such as LP-functions and L] -
functions in the sense of LP-convergence and L

lae

-convergence respec-
tively.

Here we assume that p is a real number such that 1 < p < oo holds.

In the calculation of such derivatives and partial derivatives, we do
nat need the theary of distributions except the case p = 1.

Therehy, I give the new characterization of Sabalev spaces and give
the new meaning of Stone’s Theorem.

Especially, in the cases of L’-functions and L}, -functions, these re-
sults have the essential role in the study of Schradinger equations.

2000 Mathematics Subject Classification. Primary 46E30, 46E35 ;
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Introduction

Every solution of Schrédinger equation which is the basie equation of nat-
ural statistical physics should be an L’?-density. Further, the solutions of an
eigenvalue problem of a Schrédinger operator can be obtained as L?-densities
and I -densities.

For these functions, these derivatives in the sense of distributions are the
most general one at present.

But, when we consider the derivatives of such classical functions as L-
functions and L -functions, it is extreme to consider the derivatives in the
sense of distributions.

It is not easy to judge that the derivatives or the partial derivatives of
L2-functions in the sense of distributions are L?-functions.

Therefare, it is hard to see the concrete meanings of the concept of deriva-
tives in the sense of distributions.

Against the above, if we calculate the derivatives or the partial derivatives
in the sense of L?-convergence, the results are L?-functions at once.

Similarly, if we calculate the derivatives or the partial derivatives of L -
functions in the sense of L -convergence, the results are L} -functions at
once. Therefore, the differential calculus in the sense of L2-convergence or
L} -convergence is considered ta be very concrete and useful.

Therefore, for the differential equations such as Schrédinger equations, the
concepts of differential calculus considered in ito [4], [5] are very useful.

In order to solve a Schrédinger equation, we need not use the differential
caleulus in the sense of distributions. Namely, here, it is enough to use the
differential calculus in the sense of L?-convergence or L - convergence.

In this paper, in the more, we consider the derivatives or the partial deriva-
tives of L?-functions in the sense of L?-convergence or those of Li -functions
in the sense of L{, - convergence, and we also consider these fundamental prop-
erties.

Here we assume 1 < p < oc.

In the special case. we consider the case p — 2.

Further, thereby, we obtain the new characterizations of Sobolev spaces and
the new meaning of Stone’s theorem.

1 Differential calculus

1.1 Definition of differentiability

As for the results in this subsection, we refer to Ito [1], Chapter 4.
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Assume d > 1.
We consider the d-dimensional Euclidean space R? and a point x in R? is

considered to be a numerical vector = = (x1, 79, -+ ,74).
Now, we consider a scalar function y = f(z) = f(x1,22.--- ,14) defined in
a certain neighborhood of a point 2 =* (21,29, - ,24).

Now we put
Ax =t (AIhAIg, U :Amd)i

T4+ Ax =" (z1 + Axy, 29 + Axg, -+ 24 + Axy).

Further, p denoctes the distance of x and x + Az, which is equal to

p=V(Az1)? + (Az2)? + - + (Aza)?.

Definition 1.1.1 In the above notation, we put the increment Ay at a
point x as

d
Ay = f(z+Az) - f(z) =D AAz; + £(x, Ax)p.

=1

Here, 4;, (1=1,2,--- ,d) depend only on x, but not on Ax. £ = e(z,Azx) is a
scalar function of x and Ax.
Now, if, at a fixed point z, the condition

p— 0= ce(xz.Az) — 0
is satisfied, we say that y = f(z) is differentiable at the point z.

Here we extend the definition of (z, Ax) as &(x,0) = 0.

Remark 1.1.1  In the definition 1.1.1, &(z, Ax) is determined by the
relation

d
Ay - AiAz
e(z,Ax) = + (if Az #0),
0, (if Az = 0).

Further, A; will be known to be a partial derivative of the scalar function
y = f(z) with respect to x; at a point 2, (i=1,2,--- ,d).
In the case d = 1, we only consider the derivative of the scalar function

y = f(2).

By virtue of Definition 1.1.1, the fact that a scalar function y = f(x) is
differentiable at 2 means that the increment Ay of y for the increment Az of x
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can be approximated well enough by a hamogeneous function of the components
of Az of degree 1, namely by 1-form of Ax.

Theorem 1.1.1  If a scalar function y = f(z) is differentiable at a point
x, f(x) is continuous at the point x.

Definition 1.1.2  Let D be a domain in R?. If y = f(z) is differentiable
at every point in D, we say that this function is differentiable on D.

Theorem 1.1.2  Let D be a domain in R?. 1f a function y = f(z) is
differentiable on D, y = f(x) is continuous on D.

It is important that the definitions and the results in the theorems in the
above hold for the cases d > 1.
Now we consider the vector function y = &(z) defined by the system of
scalar functions
Yi = gi(z1.22, -+ ,za), (1< i <m).
Then we give the definition of differentiability of a vector function in the fol-

lowing.

Definition 1.1.3  In the above notation, we put the increment Ay of y
at a point x corresponding to the increment Az of z as follows:

d
Ay = &(z+ Az) — &(x) =Y A;Az; +e(z, Ax)p.

=1

Here the column vectors A;, (i = 1,2,--- ,d) depend on only z, but not on
Ax. £ = e(x, Ax) is a vector function of z and Ax.
Now, if, at a fixed point z, the condition

p—=0=¢e(z,Az) >0

is satisfied, we say that y = &(x) is differentiable at the point z.
Here we extend the definition of &(x, Az) as e(x,0) = 0.

Remark 1.1.2 In the definition 1.1.3, the vector function &(z, Az) is
determined by the relation

d
Ay - A;Az

ez, Ax) = +p, (if Az + 0),

0, (if Az = 0).
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Further, the column vector 4; will be known ta be the partial derivative of
the vector function y = &(x) with respect to x; at the point z, where we put
i=1,2,---,d.

Then, the fact that the vector function y = &(z) is differentiable means that
the increment Ay of y corresponding to the increment Ax of 2 is approximated
well enough by the image of Az by the linear map

Ay
— = (A4, A5 --- Ay).
L~ Ay As e Ad)
Here the symbals of column vectors 4, 4, -« - , A, are the same as in Definition
1.1.3.
Then this linear map is equal to the Jacobi matrix
Oy
= —(A; A5 --- A
5 (A1 Ay d)
Oy Oy Oy
3.’.“:1 3.’.‘12 33?{1
— | Oy Oxa Ox,4
aynl 6?}1’11 . aynl
dr,  Oxs dza)
This is the differential coefficient of the vector function y = &(z).
Ay

When x is varing, this also means that the function of x is the derivative.

ox

Corollary 1.1.1  The vector function y = &(z) is differentiable at a point
x if and only if each coordinate function g;(x) is differentiable at the point x,
(1<i<n).

Theorem 1.1.3  If the vector function y = &(x) is differentiable at a
point x, y = ¥(x) is continuous at the point.

Definition 1.1.4  If the vector function y = &(x) is differentiable at each
paint in a domain D, we say that this vector function y = &(z) is differen-
tiable an D.

Theorem 1.1.4  If the vector function y = &(x) is differentiable on the
domain D, y = &(x) is continuous on D.
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1.2 Some aspects of differentiability

Here we assume d > 1.

In Definition 1.1.1 and Definition 1.1.2, we give the differentiability of a
scalar function y = f(2) defined on a domain D in R?.

Then, considering the convergence

e(z,Az) — 0 (1.2.1)

in Definition 1.1.1 according several notions of convergence, we have several
notians of differentiability.

This means that we consider the notions of differentiability of scalar func-
tions of several classes of functions.

In the sequel, especially, we consider the differentiability of LP-functions
and L} -functions.

We remark that these results are new ones.

(1) LP-differentiability

We denote the space of all p-integrable scalar functions on R as IP =
L?(RY).

Then, we give the notion of LP-differentiability. Namely, we consider the
notian of differentiability of scalar LP-functions in the sense of the convergence
of LP-norm.

Here, LP-norm is defined by the relation

b =( [ 15@Pas )", (s e 7).

Here the integration denotes the Lebesgue integral on R
Now we give the following Definition 1.2.1.

Definition 1.2.1(LP-differentiability) Let a scalar function y = f(xz)
be an LP-function defined on R".

Then we put the increment Ay of the scalar function y = f(x) according
to the increment Ax of the independent variable z as follows:

Ay = f(y+,ﬁ.’.‘") —f(:.'“]

= ZJ—L(J‘]&T, +E($,&$]p- (]22)

i=1

—

i=1,2,--- ,d) are the scalar functions of = which
x,Ax) is a scalar function of z and Ax.

Here we assume that A;(x),
do not depend on Az. £ =¢

—
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Then we say that the scalar function y = f(x) is differentiable in the sense
of LP-convergence on R? if the condition

Ar — 0= e(2,Ax) — 0 (1.2.3)

is satisfied in the sense of LP-convergence on R? as an I”-function of z.
Namely, this is equivalent to the condition that the relation

Jm |le(z Azl = 0
is satisfied.

Here, instead of saying that a scalar function y = f(z) is differentiable in
the sense of LP-convergence, we say that it is LP-differentiable simply.

Now we denacte the space of all p-integrable scalar functions on a general
domain D in R? as L?» = L?(D). We may consider that L?(D) is a subspace
of L?(R%).

Therefore, we say a function f € LP(D) to be LP-differentiable if the func-
tion f is LP-differentiable considering that this function f is a function of
L?(R%).

(2) L}, .-differentiability

We denate the space of all locally p-integrable scalar functions defined on a
domain D as L} _ = L} (D).

Then, we give the notion of L} -differentiability. Namely, we consider the
notion of differentiability of scalar L], -functions in the sense of the convergence
of the space L!

loc”

Here, in L} . we use the notion of convergence with respect to the system of
semi-norms {gx (f); K is a compact subset of D}, where the semi-norm gz (f)

is defined by the relation

1/p
ar(f) :( / |f(:r,]|”d:r,) . (fe L. Kisacompact subset of D)
K
Now we give the following Definition 1.2.2.

Definition 1.2.2(L} _-differentiability) Let a scalar function y = f(z)
be an L]"nc—func‘rion defined on a domain D.

Then we put the increment Ay of the scalar function y = f(x) according
to the increment Ax of the independent variable z as follows:

Ay = f(z + Az) — f(z)

= ZA,-(:::)AQ:,- +e(x, Ax)p. (1.2.4)

=1
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Here we assume that A;(z), (i =1,2,--- ,d) are the scalar functions of x which
do not depend on Az. £ = £(x, Ax) is a scalar function of # and Ax.
Then we say that the scalar function y = f(x) is differentiable in the sense

of L} -convergence on the domain D if the condition

Ar — 0= e(2,Az) — 0 (1.2.5)

is satisfied in the sense of L} _-convergence on D.

Namely, this is equivalent to the condition that the relation

lim gr(e(z,Az)) = lim (/ le(x AT)P’d:}")Up—O
Jim gx(e(z, Az)) = lim K.s,, : ! =

Aax—

ig satisfied for an arbitrary compact subset K in the domain D.

Here instead of saying that a secalar function y = f(z) is differentiable in
the sense of L] -convergence, we say that it is L] -differentiable simply.

1.3 Partial derivatives

We assume that a scalar function y = f(z) = f(z1,29,- -+ ,xa) is differen-
tiable at a point z.
Then, for 1 € j < d, we have the limit

dy

— = lim f(:'r:h"':mj+Amj:"':md)_f(mh"':mj:"':md)
dxj  Ax;—0 Ax;

(1.3.1)

at the point 2 by virtue of Definition 1.1.1.

If the limit (1.3.1) exists, we say that y = f(=) is partially differentiable
with respect to x;.

We say that the calculation of the limit (1.3.1) is partially differentiating
y = f(x1,22, -+ ,24) with respect to z;.

This means that we differentiate this function y = f() with respect z;
considering that y = f(z) is a function of one variable z; if one variable x; is
varying and the other variables xy, (k # j) are fixed.

Then, we have the following theorem.

Theorem 1.3.1  We use the notation in Definition 1.1.1. If y = f(z) is
differentiable at the point x, it is partially differentiable with respect to each x;

and we have
A; = f.t,-(m): (i =1,2,--- d)
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If y = f(z) is partially differentiable at every point in D with respect to
each variable z;, we say simply that y = f(z) is partially differentiable on
N
D, and that 3—} (1 < j <d) of the formula (1.3.1) are partial derivatives
j
with respect to z;.
N
We say that the value of the partial derivatives 9y at the point z is the
i
partial differential coefficient at the point = with respect to ;.
Here we prove the inverse of Theorem 1.3.1.
Namely, we have the sufficient condition in order that a partially differen-
tiable function is differentiable.

We prove this in the following,.

Theorem 1.3.2  If a scalar function y = f(x) is partially differentiable
in a neiborhood of x and every f,,(x) is continuous at x, f(x) is differentiable
at x.

If the partial derivative f,, (z1, 29, -+ .24) of a functiony = f(x) = f(x1. 22,

-, xq) is still partially differentiable with respect to z;, (j=1,2,--- ,d), we
say that this partial derivative is the partial derivative of second degree
or the partial derivative of second arder of y, and denote this as follows:

2
0 (3?’) e’ (1.3.2)
dx; \ Ox, Oz ,;0x;
and so on.
Especially, when 7 = j holds, we denote this as follows:
a ([ oy &y
- . 5 1.3.
Ox; (33:1-) © o] (1.3:3)
and so on.

In general, we define the partial derivatives of degree m or the partial
derivatives of arder m in the similar way.

We say that all partial derivatives of order m for m > 2 are partial deriva-
tives of higher degree or partial derivatives of higher order.

If all partial derivatives up to order m exist, we say that the function is
m-~times partially differentiable.

Now we assume that a vector function y = &(z) is defined by the family of
gcalar functions

Yi = gi(T1, 22, ,xq), (1 <i<n). (1.3.4)

Then, if the vector function y = &(z) is differentiable, we can calculate
its partial derivative in the similar way as the calculation (1.3.1) for a scalar
function,
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Namely, far 1 < j < d, this is the calculation as follows:

61} . @(mh"':mj+&mj:"':md)_@(mh"':mj:"':md]
— = lim .
Or; Ax;—0 Az;

Therefore, the calculation of the partial derivatives of the vector function
y = &(x) is carried out by the calculation of the partial derivatives of each
coordinate function y; = g;(x).

Definition 1.3.1 We use the notation of Definition 1.1.3. Then, if , for
1 <€ j < d, the partial differential coefficients (1.3.5) exist at the point z, we
say that the vector function y = &(z) is partially differentiable.

We say the calculation of the limit (1.3.5) the partial differentiation of
y = &(x) with respect to ;.
Then we have the following theorem.

Teorem 1.3.3  We use the notation of Definition 1.1.3. If y = &(x)
is differentiable at the point x, it is partially differentiable at the point x with
respect to each x; and we have

dy

A= g (=1.2.0.d)

We can also prove the inverse of Theorem 1.3.3.
If y = &(x) is partially differentiable with respect to each variable z; at
every point of a domain D, we say merely that y = &(z) is partially differ-
a
entiable on D and that we say 3—1} (1 < 5 €d) in the formula (1.3.5) are
z;
the partial derivatives with respect to z;, (1 < j <d).
We say that the value of the partial derivative a—u at the point z is the
partial differential coefficient at the point z with respect to ;.
It is known that we can calculate the partial drivatives 9 of the scalar
zj
function y = f(z), (1 € j € d) using the formula (1.3.1).
Further, it is known that we can calculate the partial derivatives 9y of the
Tj
vector function y = &(z), (1 € j < d) using the formula (1.3.5).
Then, we have the concept of LP-differentiability for the LP-functions, and
L} -differentiability for the L} -functions in the similar way as section 1.2.

loc
Therefore, we can calculate the derivatives of LP-functions and L _-functions

loc

by virtue of the formulas (1.3.1) and (1.3.5) using the concepts of convergence
(1), (2) in the section 1.2.
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3]
Then, the obtained partial derivatives Y and the vector valued partial

3,
derivatives 3—1} (1 < j < d) are also an LP-function or L} -function.
zj
Therefore, we have the concepts of differential calculus adapted to LP-
functions and L _-functions.

1.4 Fundamental properties of partial derivatives

Agsume d > 1. Especially in the case d = 1, we only cansider the derivatives
instead of the partial derivatives in the following arguments.

Further, assume that D = D(R?) is the space of all C*-functions with
compact support defined on R?.

Assume f(z) € L? = LP(R") .

Then, if f(z) is LP-differentiable, the partial drivatives of f(z) in the sense
of LP-convergence are considered to be the weak partial derivatives.

But the proof of the inverse assertion is difficult.

Here we give the definition of the weak partial derivative.

Definition 1.4.1 Now assume f(z) € LP.
Then, for 1 < j < d, the weak partial derivative of f(x)

d
m——f e Ll _
B:r,j

is defined to be the function satisfying the condition

(w—%‘i,np)—— (f%) (g € D).

Then we have the following theorem.

Theorem 1.4.1  Now we assume f(z) € LP.
Then, if f(x) is partially LP-differentiable, f(x) is weakly partially differen-

tiable, and its partial derivative —— in the sense of LP-conuvergence coincides
Tj
. . o of .
with the weak partial derivative w-—— for 1 < j < d. Namely, we have the
7
equality
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or, the equality

(g—i ):(’*‘”'g—izsﬂ), (peD, 1<j5<d).

Then, the weak partial derivatives w—aa—f, (1 <3<d)of f(x) € LP are

T
LP-functions.

This fact is not the property which holds absclutely for any f(x) € LP.

Theorem 1.4.2  Now we assume that 1 < p < co and f(x) € LP. Then
3]
if the weak partial derivative w-a—f of f(x) exists and we have w—a— e L?
for1 < j <d, f(x) is partially LP-differentiable and we have

of _ of

W-—

=—, (1<5<
3Ij 3:.'“;,( _J_d)

3]
for the partial derivative a—f of f(x) in the sense of LP-convergence.
7

d
loc lnc(R )
Then we give the definition of weak partial derivatives.

Further, we assume L” = LP

Definition 1.4.2 Now we assume that f(z) € L] _ hold. Then, for

1 < j < d, we define the weak partial derivative wo— € L}, of f(z) is
Tj
defined to be the function satisfying the condition

(2Loo)- (£32) wem

€T i

Then we have the following theorem.

Theorem 1.4.3  Now we assume that f(x) € L} hold. 1f f(x) is par-

tially LY -differentiable, then, f(x) is weakly partially differentiable and its

loc

partial derivative —— in the sense of LV -convergence coincides with the par-

loc
33‘,}‘

17,
tial derivative m—a—f for 1 < 3 <d. Namely, we have the equality
™
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or the equality

(g—i ):(’*‘”'g—izsﬂ), (peD, 1<j5<d).

d
Then the weak partial derivative m—a—f of f(z) € L} _is an L} -function,

2, loc
(1<j<d.

Theorem 1.4.4  Now we assume that 1 < p < oo and f(x) € L}

loc

d
hold. Then, if the weak partial derivative m——f of f(z) exists and we have

Ox;
a
w—a—f € Ly for1 <j<d, f(x) is partially L} _-differentiable, and we have
7

of _ of

P
loc

a
for the partial derivative —f of f(x) in the sense of L

3Ij

-CONVETHENCE.

Further we have the commutability theorem of the order of partial differ-
entiations in the following.

Theorem 1.4.5  Assume d > 2. We assume that f(x) € LP hold or
D o f f
fx)eL

an
1

o a.’.":,'a.’.":j aﬂ‘ljaﬂ‘:.,'
-conuvergence respectively, we have the

hold. 1f, for 1 < i.5 < d, (1 # 3), there exist

»

. v . _
in the sense of LP-convergence or Ly

equality
’f o f
33‘,,'33“,}‘ N 33“_733‘,

32 2
Proof For the function f(z), we have w- B0z, and w- 32,07, in the
sense of Schwartz distribution and we have
o f a9 f
= w- .
dx; 0z, Ox;0x;°
A f a?f

Then, since we have
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we have . )
orf 9f /)
3.‘}1,'3.’.'13‘ - 3.‘}13‘33‘,‘,' )

Theorem 1.4.6  For a sequence of functions f,(z) € LP, (n =1,2,3,
.-+ ), there exist f,qg € LP such that

fn_>f: (n_>00):

% — g, (ﬂ — 00):
3.71}'

3]
for 1 < 45 <d, there exists a—f € L? such that we have
.

7

ot _
Smj -9

3,
Namely, the partial differential operator — is a closed operator.

3Ij

Theorem 1.4.7  For a sequence of functions f,(z) € L

loc:
---), there exist f,g € L} such that we have

(n=1,2,3,

fao— 1. (n_>00):

% — g, (ﬂ — 00]:
3.71}'

. d
for 1 < 4 <d, then, there exists —f € L} _ such that we have
I )

8t _
3Ij -9

d
Namely the partial differential operator —— is a closed operator.

x;

2 New characterization of Sobolev space

In this section, we study the new characterization of Sobolev space.

Now we assume that p is a real number such that 1 < p < oo, and m is
a natural number such that m > 0. Further, for d > 1, 2 is an open set in
d-dimensional space R%.
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Then the Sabolev space W™P(£2) on 2 is defined in the following.

Namely, u € LP(Q2) belongs to W™?(Q) if and only if, for all multi-indices
a = (1,09, - ,04) such that |a| < m, there exists weak a-derivative of u.

In this definition, the weak a-derivative u, is an element of L?(Q), but this
is calculated as a weak derivative.

In the real, the condition in order that this weak a-derivative u, is an
element of LP(f2) is not evident. It is not so easy to distinguish that this
condition is satisfied or nat for a concretely given function.

But, then, since, by virtue of Theorem 1.4.2, u € W™P?(Q) is m-times
partially differentiable in the sense of LP-convergence in the case 1 < p < oo,
we have the following theorem.

Theorem 2.1  Now we assume that M™P(Q) is the vector space com-
posed of all m-times partially differentiable functions u € LP(Q)) in the sense
of LP-convergence. Then, for a-partial derivative u'™) of u in the sense of
LP-convergence, we have the equality

u™ =y, (Ja| <m)

Here, a denotes a multi-inder o = (a1, 9, -+ - , vg).

Especially, when d = 1, we consider the derivative instead of the partial
derivative.

Then, for 1 < p < co, we have

M™P(Q) = W™P(Q).

Further, we have
qgm.1 m,1
M™(Q) ;E wm™HQ).

Thus, the space M™1() is a new space founded in this paper at the first
time.

This gives the new characterization of Sobaolev space using the concepts of
the derivative and the partial derivative in the sense of LP-convergence.

Thereby, in arder to define the Sobaolev space, we need not use the concept of
weak derivative or the concept of the partial derivative in the sense of Schwartz
distribution except the case p = 1.

In Kuroda [7], p.124, the definition of “LP-derivative” is also given. But
this is different from the concepts of LP-derivative and partial LP-derivative
defined in this paper.

In Kuroda [7], in the calculation of “LP-derivative”, the calculation of the
derivative or the partial derivative is not in the sense of LP-convergence.
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Theorem 2.2 If, for u € W™P(Q), we denote the partial L?-derivative
D®u in the following equality

aloly

D= D{'D3? - DY'u = .
v d Ox]'0x5? -+ - 9xlt”

a= (a0, ,a4), |a| =a1 +as+ -+ aaq,

WmP(Q) is a Banach space by virtue of the norm

ol =( 3 107l

la<m

Here, || - ||, denote the norm of L?(12).
FEspecially, for p = 2, W™2(Q) is a Hilbert space by virtue of this norm.
Its inner product (-,-)m,2 is given by the equality

(4, 0)m,2 = Z (Du, D%v)s.

lal<m

Here (-,-)a denote the inner product of L*(£2).

We have the following theorem by virtue of Theorem 1.4.3 and theorem
1.4.4.

Theorem 2.3  Now we assume that M, :"(Q) is the vector space com-
posed of all m-times partially differentiable function u € L} () in the sense
of L, - convergence.

Especially, when d = 1, we consider the derivative instead of the partial
derivative.

Then, for 1 < p < oo, we have

My () = W (90).

Further, we have

Mt () S Wi (Q).

loc loc

Thus, the space ﬂ-’f]:ICJ (©) is a new space founded in this paper at the first
time.
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3 New meaning of Stone’s Theorem

By using the concept of derivative in the sense of L?-convergence, we give
the new meaning of Stone’s Theorem.

As for Stone’s Theorem, we refer to Kuroda [7].

Thus, in the caleulation of the generating operator of 1-parameter semi-
group or 1-parameter group. we have really used the calculation of LP-derivative
or, especially, L?-derivative already.

The concept of LP-derivative in this paper is a generalization of these results
of concrete examples.

Theorem 3.1 (1-parameter group) PutH = L?(—o0, ). Foru(s) €
H, we define the unitary operator U, (—oo < t < 00) on H by virtue of the
relation
(U)(s) = u(t + 8), (—oo < 8,1 < 00).

Then the system of unitary operators {U;; —oo < t < oo} is 1-parameter group.
Namely, this satisfies the following conditions (1) ~ (3) :

(]) UsUg = Us-‘,—t: (—OO < S,t < OO)
(2) Uy = 1. Here the symbol I denotes the identity operator of H.

(3) f]il,? U, = Uy, (in the strong sense), (—oo < tg < 00).
f—ig

Theorem 3.2 (Stone’s Theorem)  For the 1-parameter group {U;; —o0
<t < oo} in Theorem 3.1, there erists

1
lim n ( U, — Uy ): A (in the strong sense)

t—=0

such that the following (1), (2) are satisfied :

1d 1

| =—-—— = —A.
(1) H ids i

(2) Uy=exp (td)=exp (itH), (—00o <t < 0).

Theorem 3.3 We use the notation in Theorem 3.2. Then, for u €
W12(—00, ), we have

%Utu =UAu = AUu, (—o00 < 1 < x0)

in the sense of L?-convergence.
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