An algorithm for computing Grothendieck local residues I
— shape basis case —

K. Ohara¹, S. Tajima²

¹ Kanazawa University, Japan, ohara@se.kanazawa-u.ac.jp
² University of Tsukuba, Japan, tajima@math.tsukuba.ac.jp

In this talk, we will give an algorithm for exactly computing Grothendieck local residues for rational \(n \)-forms of \(n \) variables under certain condition and show an implementation on a computer algebra system Risa/Asir. Grothendieck local residue is natural generalization of the well-known residue for complex functions of one variable and is defined as an integration of meromorphic \(n \)-form of complex \(n \) variables on a real \(n \)-cycle around an isolated common zero. Let us recall the analytic definition of Grothendieck local residues. (see [1] chapter 5 for detail.)

Definition. Denote by \(\mathcal{O}(U) \) a ring of holomorphic functions on a ball \(U \subset \mathbb{C}^n \). Suppose that \(f_1(x), \ldots, f_n(x) \in \mathcal{O}(U) \) make regular sequence and have only one isolated common zero \(b \in U \). Let \(\Gamma(b) \) be a real \(n \)-cycle around \(b \) defined by \(\Gamma(b) = \{ x \in U | \|f_1(x)\| = \varepsilon, \ldots, \|f_n(x)\| = \varepsilon \} \) and oriented by \(d(\arg f_1) \wedge \cdots \wedge d(\arg f_n) \geq 0 \). Denote \(\tau_F = (f_1(x) \cdots f_n(x))^{-1} dx_1 \wedge \cdots \wedge dx_n \), where \(x = (x_1, \ldots, x_n) \).

For any \(\varphi(x) \in \mathcal{O}(U) \), the integration

\[
\text{Res}_b(\varphi(x) \tau_F) = \left(\frac{1}{2\pi} \right)^n \int_{\Gamma(b)} \varphi(x) \tau_F
\]

is called the Grothendieck local residue of meromorphic \(n \)-form \(\varphi(x) \tau_F \).

Grothendieck local residue is a quite important concept in pure mathematics. However it is hard to directly evaluate them from the definition because of complicated geometric shape of the real \(n \)-cycle in \(2n \)-dimensional real space. The correspondence \(\varphi \mapsto \text{Res}_b(\varphi \tau_F) \) given by the local residue can be regarded as a distribution on \(\mathcal{O}(U) \) and can be expressed by a linear partial differential operator. That is, there exists a linear partial differential operator \(T_F = \sum c_\alpha(x) \partial^\alpha \) determined by the regular sequence \(F = \{ f_1, \ldots, f_n \} \) such that \(\text{Res}_b(\varphi \tau_F) = (T_F \bullet \varphi)_{x=b} \). Here “\(\bullet \)” is notation to express action by a differential operator to a function. Thus, the local residue can be evaluated if the operator \(T_F \) can be calculated. Our purpose is to develop new and effective method for exactly computing the operator \(T_F \) from the regular sequence under certain condition.

To treat the local residue using computer algebra system, we suppose that the regular sequence consists of polynomials. The set \(F \) generates a zero-dimensional
ideal I in $\mathbb{C}[x] = \mathbb{C}[x_1, \ldots, x_n]$. Then the local residue $\varphi \mapsto \text{Res}_b(\varphi \tau_F)$ is determined by the algebraic local cohomology class $\sigma_F = \left[\frac{1}{f_1 \cdots f_n} \right] \in H^p_{\mathfrak{m}}(\mathbb{C}[x])$. The linear partial differential operator T_F is called Noether differential operator with respect to the algebraic local cohomology class σ_F.

As it is well known, a polynomial ideal is decomposed to an intersection of primary ideals. Then the algebraic local cohomology class is also expressed as

$$\sigma_F = \sigma_{F,1} + \cdots + \sigma_{F,\lambda} + \cdots + \sigma_{F,N},$$

where the support Z_λ of $\sigma_{F,\lambda}$ coincides the zero set of corresponding primary component of I. Let $\beta \in Z_\lambda$ and $\varphi(x) \in \mathbb{C}[x]$. Since $\sigma_F dx = \sigma_{F,\lambda} dx$ on Z_λ, we have $\text{Res}_b(\varphi \sigma_F dx) = \text{Res}_b(\varphi \sigma_{F,\lambda} dx)$. Thus is allows to compute expression of the local residue on each irreducible components. We denote by $T_{F,\lambda}$ the corresponding Noether differential operator to the local residue $\varphi \mapsto \text{Res}_b(\varphi \sigma_{F,\lambda} dx)$. Hence the set $\{(T_{F,\lambda}, Z_\lambda) \mid \lambda = 1, 2, \ldots, N\}$ gives an expression of the Noether differential operator T_F.

In this talk, we treat the special case that the primary ideal I_λ is expressed by shape bases. Our purpose is to determine the differential operator $T_{F,\lambda}$ from I_λ. We use two tools to solve this problem. One is Noether differential operator bases which describes a relation between I_λ and $\sqrt{I_\lambda}$. Another is a suitable subset of the annihilating ideal $\text{Ann}_{D_n}(\sigma_{F,\lambda})$ of the algebraic local cohomology class σ_F. The annihilating ideal is a left ideal in the Weyl algebra D_n. So the cost of computation of $\text{Ann}_{D_n}(\sigma_{F,\lambda})$ is high in general.

Under the shape base condition of primary ideals, we can explicitly construct Noether differential operator bases and suitable subset of $\text{Ann}_{D_n}(\sigma_{F,\lambda})$ without Gröbner bases in Weyl algebra. Hence our algorithm is effective.

References

