This journal is devoted to the publication of original research papers of our university staff and their joint researchers. One volume is published in each school year.

The journal is the new series of “Journal of Mathematics, Tokushima University” and “Journal of Gakugei, Tokushima University”. “Journal of Gakugei, Tokushima University” was published from 1951 to 1966. “Journal of Mathematics, Tokushima University” was published from 1967 to 2000. The new series started in 2001. The volume number of the journal succeeds to that of the former series.

The contents of all papers of the journals from 1967 can be seen at the web site:

http://www-mathias.tokushima-u.ac.jp/

Any communication with the journal should be addressed to:

The Editorial Committee of
Journal of Mathematics
The University of Tokushima
1-1, Minamijosanjima-cho
Tokushima-shi, 770-8502
JAPAN
CONTENTS

Kuwabara, R.: A Note on Symmetric Differential Operators and Binomial Coefficients .. 1

Katayama, S.: Some Infinite Series of Fibonacci Numbers 9

Katayama, S.: On Some Formula for \(\pi/2 \) 13

Ono, K.: Existence of Global and Bounded Solutions for Damped Sublinear Wave Equations ... 19

Sakaguchi, H. and Imai, H.: A Numerical Method for Distinction between Blow-up and Global Solutions of the Nonlinear Heat Equation 27

Information from Journal of Mathematics, The University of Tokushima 45
A Note on Symmetric Differential Operators and Binomial Coefficients

By

RUISHI KUWABARA

Faculty of Integrated Arts and Sciences,
The University of Tokushima,
Minami-Josanjima, Tokushima 770-8502, JAPAN
e-mail: kuwabara@ias.tokushima-u.ac.jp

(Received September 30, 2008)

Abstract

In this note we derive some identities concerning the binomial coefficients by considering a certain n-th order symmetric differential operator on \(\mathbb{R}^n \) associated to the function \(p(x, \xi)(x \in \mathbb{R}^n) \) which is a homogeneous polynomial in \(\xi \).

2000 Mathematics Subject Classification. 05A10

Introduction

Let \(\binom{n}{k} \) denote the binomial coefficients, namely

\[
(1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k.
\]

Various formulas for the binomial coefficients are well known (see e.g. [1], [2]). For example we have

\[
\sum_{k=0}^{n} \binom{n}{k} = 2^n,
\]

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0,
\]

\[
\sum_{k=r}^{n} (-1)^{k-r} \binom{k}{r} \binom{n}{k} = 0 \quad (n \geq r),
\]

which are easily obtained from (1). (The last one is obtained by differentiating (1) \(r \) times relative to \(x \), dividing by \(r! \), and putting \(x = -1 \).)

In this note we consider a certain linear symmetric differential operator, and derive some identities concerning the binomial coefficients (Corollaries 5 and 6).
1. Symmetric differential operators

Let $C_0^\infty(\mathbb{R}^m)$ denote the space of complex-valued C^∞ functions on \mathbb{R}^m with compact support. Suppose the space $C_0^\infty(\mathbb{R}^m)$ is endowed with the inner product (\cdot, \cdot) defined by

$$(f, g) := \int_{\mathbb{R}^m} f(x)\overline{g(x)} \, dx_1 \cdots dx_m \quad (f, g \in C_0^\infty(\mathbb{R}^m)).$$

Let $D_j \ (j = 1, \ldots, m)$ denote the differential operator $\frac{1}{i} \frac{\partial}{\partial x_j} \ (i := \sqrt{-1})$. Then, D_j is a symmetric operator, namely,

$$(D_j f, g) = (f, D_j g) \quad (f, g \in C_0^\infty(\mathbb{R}^m))$$

holds.

Let us consider a function $p(x, \xi)$ of variables $(x_1, \ldots, x_m, \xi_1, \ldots, \xi_m)$ which is a polynomial in ξ_j's :

$$p(x, \xi) = \sum_{p=0}^{n} \sum_{j_1, j_2, \ldots, j_p} a_{j_1j_2\cdots j_p}^{j_1j_2\cdots j_p} (x) \xi_{j_1} \xi_{j_2} \cdots \xi_{j_p},$$

where $a_{j_1j_2\cdots j_p}^{j_1j_2\cdots j_p} (x)$'s are symmetric with respect to the indices j_1, j_2, \ldots, j_p.

The function $p(x, \xi)$ is regarded as an “observable” in the phase space $T^* \mathbb{R}^m$ of classical mechanics. In theory of quantum mechanics the classical observable $p(x, \xi)$ corresponds to a self-adjoint operator on the Hilbert space $L^2(\mathbb{R}^m)$ according to the corresponding rule of variables:

$$\xi_j \mapsto D_j, \quad x_j \mapsto x_j \times .$$

We consider the symmetric (formally self-adjoint) operator corresponding to the homogeneous polynomial of degree n given by

$$p_n(x, \xi) = \sum_{j_1, j_2, \ldots, j_n} a_{j_1j_2\cdots j_n}^{j_1j_2\cdots j_n} (x) \xi_{j_1} \xi_{j_2} \cdots \xi_{j_n}.$$

By applying the corresponding rule directly to $p_n(x, \xi)$ we get the n-th order differential operator

$$P_n = \sum_{j_1, j_2, \ldots, j_n} a_{j_1j_2\cdots j_n}^{j_1j_2\cdots j_n} (x) D_{j_1} D_{j_2} \cdots D_{j_n}.$$

Lemma 1 The adjoint operator P_n^* of P_n is given by

$$P_n^* = \sum_{j_1, \ldots, j_n} D_{j_1} \cdots D_{j_n} (\overline{a_{j_1\cdots j_n}^{j_1\cdots j_n} (x)}).$$

$$= \sum_{p=0}^{n} \binom{n}{p} \sum_{j_{p+1}, \ldots, j_n} (D_{j_1} \cdots D_{j_p} \overline{a_{j_1\cdots j_n}^{j_1\cdots j_n} (x)}) D_{j_{p+1}} \cdots D_{j_n},$$

where $\overline{a_{j_1\cdots j_n}^{j_1\cdots j_n} (x)}$ denotes the complex conjugate of $a_{j_1\cdots j_n}^{j_1\cdots j_n} (x)$.
Remark The property \((P_n^*)^* = P_n\) (formally) derives the formula (4). In fact, by virtue of Lemma 1 we have

\[
(P_n^*)^* = \sum_{p=0}^{n} (-1)^p \binom{n}{p} \left\{ \sum_{q=0}^{n-p} \binom{n-p}{q} \sum_{j_1, \ldots, j_n} (D_{j_1} \cdots D_{j_q} a^{j_1 \cdots j_q}(x)) D_{j_{q+1}} \cdots D_{j_n} \right\}.
\]

The \((n-r)\)-th order differential term of \((P_n^*)^*\) is given by

\[
\sum_{p+q=r} (-1)^p \binom{n}{p} \binom{n-p}{q} \sum_{j_1, \ldots, j_n} (D_{j_1} \cdots j_r a^{j_1 \cdots j_r}(x)) D_{j_{r+1}} \cdots D_{j_n}.
\]

Hence, for \(1 \leq r \leq n\) we have

\[
0 = \sum_{p+q=r} (-1)^p \binom{n}{p} \binom{n-p}{q} \\
= \sum_{p=0}^{r} (-1)^p \binom{n}{n-p} \binom{n-p}{r-p} = \sum_{p=0}^{r} (-1)^p \binom{n}{n-p} \binom{n-p}{n-r},
\]

that is nothing but the formula (4).

In order to obtain the symmetric operator \(P\) corresponding to \(p_n(x, \xi)\) we put

\[
P = \sum_{j_1, \ldots, j_n} a^{j_1 \cdots j_n}(x) D_{j_1} \cdots D_{j_n}
\]

\[
+ \sum_{p=1}^{n} c_{n-p} \left[\sum_{j_1, \ldots, j_n} (D_{j_1} \cdots D_{j_p} a^{j_1 \cdots j_n}(x)) D_{j_{p+1}} \cdots D_{j_n} \right],
\]

where \(a^{j_1 \cdots j_n}(x)\)'s are real-valued functions, and \(c_{n-p}\)'s are complex constants.

Proposition 2 The operator \(P\) is symmetric, i.e., \(P^* = P\) if and only if the coefficients \(c_{n-p}\) \((p = 1, 2, \ldots, n)\) satisfy

\[
c_{n-p} = (-1)^p \bar{c}_{n-p} + (-1)^{p-1} \binom{n-p+1}{1} \bar{c}_{n-p+1} \\
+ (-1)^{p-2} \binom{n-p+2}{2} \bar{c}_{n-p+2} + \cdots \\
\cdots - \binom{n-1}{p-1} \bar{c}_{n-1} + \binom{n}{p}.
\]
Proof. The assertion is directly derived by comparing the coefficients of
\((n - p)\)-th order differential terms in \(P\) and \(P^*\). \(\square\)

As examples of symmetric operators of the form (5) we have the following:

\[
\sum_j a^j(x)D_j + \frac{1}{2} \sum_j D_j a^j(x),
\]
\[
\sum_{j,k} a^{jk}(x)D_j D_k + \sum_k \left(\sum_j D_j a^{jk}(x) \right) D_k,
\]
\[
\sum_{j,k,l} a^{jkl}(x)D_j D_k D_l + \frac{3}{2} \sum_{k,l} \left(\sum_j D_j a^{jkl}(x) \right) D_k D_l - \frac{1}{4} \sum_{j,k,l} D_j D_k D_l a^{jkl}(x).
\]

Observing these examples we assume the coefficients \(c_{n-p}\) \((p = 1, 2, \ldots, n)\) to be

\[
c_{n-p} = \begin{cases}
\text{a real number} & (p : \text{odd}) \\
0 & (p : \text{even})
\end{cases} \quad (7)
\]

Theorem 3 For any \(n \in \mathbb{N}\), and any real valued functions \(a^{j_1 \cdots j_n}(x)\) there exists an unique \(n\)-th order symmetric differential operator \(P\) of the form (5) satisfying the condition (7).

Proof. First we show the existence of \(P\) (cf. [3, Lemma 4.2]). Let \(Q_0 := \sum a^{j_1 \cdots j_n}(x)D_{j_1} \cdots D_{j_n} (= P_n)\). Put

\[
Q_1 := \frac{1}{2}(Q_0 + Q_0^*).
\]

Then, by means of Lemma 1 \(Q_1\) is a symmetric operator with the \(n\)-th order term being equal to \(Q_0\), and the coefficients

\[
\frac{1}{2} \binom{n}{p} \sum_{j_1, \ldots, j_p} D_{j_1} \cdots D_{j_p} a^{j_1 \cdots j_p \cdots j_n}(x)
\]

of the \((n - p)\)-th order term of \(Q_1\) are real if \(p\) is even. Let \(P_{n-2}\) denote the \((n-2)\)-th order term of \(Q_1\), and put

\[
Q_2 := Q_1 - \frac{1}{2} (P_{n-2} + P_{n-2}^*).
\]

Then, \(Q_2\) is a symmetric operator of the form (5) with \(c_{n-p}\) being real and \(c_{n-2} = 0\).

Next, let \(P_{n-4}\) be the \((n-4)\)-th order term of \(Q_2\), and put

\[
Q_4 := Q_2 - \frac{1}{2} (P_{n-4} + P_{n-4}^*).
\]

Then, \(Q_4\) is a symmetric operator of the form (5) with \(c_{n-p}\) being real and \(c_{n-2} = c_{n-4} = 0\). Thus by continuing this process we get \(Q_2, Q_4, Q_6, \ldots\), and we obtain the required operator \(P\) as \(Q_{n-1}\) if \(n\) is odd, or \(Q_n\) if \(n\) is even.
Next, we show that the coefficients c_{n-p} is uniquely determined by the condition (6) under the assumption (7).

Suppose n is odd. The condition (6) for $p = 1, 2, \ldots$ gives a system of linear equations for $c_{n-1}, c_{n-3}, \ldots, c_2, c_0$ as follows:

\[
\begin{align*}
2c_{n-1} &= \binom{n}{1}, \\
\left(\begin{array}{c}
\binom{n-1}{1} \\
1
\end{array}\right) c_{n-1} &= \binom{n}{2}, \\
2c_{n-3} + \left(\begin{array}{c}
\binom{n-1}{2} \\
2
\end{array}\right) c_{n-1} &= \binom{n}{3}, \\
\left(\begin{array}{c}
\binom{n-3}{1} \\
1
\end{array}\right) c_{n-3} + \left(\begin{array}{c}
\binom{n-1}{3} \\
3
\end{array}\right) c_{n-1} &= \binom{n}{4}, \\
& \ldots \\
\binom{2}{1} c_2 + \binom{4}{3} c_4 + \ldots + \binom{n-1}{n-2} c_{n-1} &= \binom{n}{n-1}, \\
2c_0 + \binom{2}{2} c_2 + \binom{4}{4} c_4 + \ldots + \binom{n-1}{n-1} c_{n-1} &= \binom{n}{n}.
\end{align*}
\]

It is easy to see that the rank of the $(n \times (n+1)/2)$-matrix of the coefficients of the above linear equations is equal to $(n+1)/2$. Hence, the solution (if exists) is unique.

If n is even, the linear equations for $c_{n-1}, c_{n-3}, \ldots, c_1$ is the following:

\[
\begin{align*}
2c_{n-1} &= \binom{n}{1}, \\
\left(\begin{array}{c}
\binom{n-1}{1} \\
1
\end{array}\right) c_{n-1} &= \binom{n}{2}, \\
2c_{n-3} + \left(\begin{array}{c}
\binom{n-1}{2} \\
2
\end{array}\right) c_{n-1} &= \binom{n}{3}, \\
\left(\begin{array}{c}
\binom{n-3}{1} \\
1
\end{array}\right) c_{n-3} + \left(\begin{array}{c}
\binom{n-1}{3} \\
3
\end{array}\right) c_{n-1} &= \binom{n}{4}, \\
& \ldots \\
2c_1 + \binom{3}{2} c_3 + \ldots + \binom{n-1}{n-2} c_{n-1} &= \binom{n}{n-1}, \\
\left(\begin{array}{c}
\binom{1}{1} \\
1
\end{array}\right) c_1 + \binom{3}{3} c_3 + \ldots + \binom{n-1}{n-1} c_{n-1} &= \binom{n}{n}.
\end{align*}
\]

This system similarly derives the uniqueness of the solution. \qed
2. Properties of binomial coefficients

From the system of linear equations for \(c_{n-1}, c_{n-3}, \ldots\) in the preceding section we have the following.

Theorem 4 Let \(1 \leq k \leq (n + 1)/2\). The following two systems of linear equations for \(c_{n-1}, c_{n-3}, \ldots, c_{n-2k+1}\) are equivalent each other:

\[
\begin{bmatrix}
{n-1 \choose 2} & 2 & 0 \\
{n-3 \choose 2} & 2 & 0 \\
\vdots & \vdots & \vdots \\
{n-1 \choose 2k-4} & (n-3k+6) & (n-2k+5) \\
{n-3 \choose 2k-4} & (n-3k+4) & (n-2k+3) \\
{\vdots} & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
c_{n-1} \\
c_{n-3} \\
\vdots \\
c_{n-2k+3} \\
c_{n-2k+1}
\end{bmatrix}
=
\begin{bmatrix}
{n \choose 1} \\
{n \choose 3} \\
\vdots \\
{n \choose 2k-3} \\
{n \choose 2k-1}
\end{bmatrix}
\]

(8)

\[
\begin{bmatrix}
{n-1 \choose 1} \\
{n-3 \choose 1} \\
{n-3 \choose 3} \\
\vdots \\
{n-3 \choose 2k-4} \\
{n-3 \choose 2k-4} \\
\vdots \\
{n-3 \choose 2k-3} \\
\end{bmatrix}
\begin{bmatrix}
c_{n-1} \\
c_{n-3} \\
\vdots \\
c_{n-2k+3} \\
c_{n-2k+1}
\end{bmatrix}
=
\begin{bmatrix}
{n \choose 2} \\
{n \choose 4} \\
\vdots \\
{n \choose 2k-2} \\
{n \choose 2k}
\end{bmatrix}
\]

(9)

Proof. The system (8) of linear equations is obtained from (6) in Proposition 2 for odd \(p = 1, 3, \ldots, 2k - 1\). On the other hand, the system (9) is obtained from (6) for even \(p = 2, 4, \ldots, 2k\). These two systems of linear equation have the same solution associated to the unique symmetric differential operator \(P\) (Theorem 3).

Note Cramer’s formulas for the solution \(c_{n-2k+1}\) of (8) and (9), and we have the following.

Corollary 5 For \(n, k \in \mathbb{N}\) with \(1 \leq k \leq (n + 1)/2\) we have the following
identity, which is equal to $(-1)^{k-1} c_{n-2k+1}$:

\[
\frac{1}{2^k} \begin{pmatrix}
\binom{n}{1} & 2 & \binom{n}{3} & \binom{n-1}{2} & 2 & \binom{n-3}{2} & \cdots & 0 \\
\binom{n}{5} & \binom{n-1}{4} & \binom{n-3}{2} & \cdots & 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\binom{n}{2k-1} & \binom{n-1}{2k-2} & \binom{n-3}{2k-4} & \cdots & \binom{n-2k+3}{2}
\end{pmatrix}
\]

\[
= \frac{(n-2k-1)!!}{(n-1)!!} \begin{pmatrix}
\binom{n}{4} & \binom{n-1}{3} & \binom{n-3}{1} & 0 & \cdots \\
\binom{n}{6} & \binom{n-1}{5} & \binom{n-3}{1} & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\binom{n}{2k} & \binom{n-1}{2k-1} & \binom{n-3}{2k-3} & \cdots & \binom{n-2k+3}{2}
\end{pmatrix}
\]

Remark If $k = 1$, (10) means

\[
\frac{1}{2} \binom{n}{1} = \frac{1}{n-1} \binom{n}{2} = c_{n-1}.
\]

Table for c_{n-p}

<table>
<thead>
<tr>
<th>n</th>
<th>c_{n-1}</th>
<th>c_{n-2}</th>
<th>c_{n-3}</th>
<th>c_{n-4}</th>
<th>c_{n-5}</th>
<th>c_{n-6}</th>
<th>c_{n-7}</th>
<th>c_{n-8}</th>
<th>c_{n-9}</th>
<th>c_{n-10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$\frac{3}{2}$</td>
<td>0</td>
<td>$-\frac{1}{4}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$\frac{5}{2}$</td>
<td>0</td>
<td>$-\frac{5}{2}$</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0</td>
<td>-5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$\frac{7}{2}$</td>
<td>0</td>
<td>$-\frac{35}{4}$</td>
<td>0</td>
<td>$\frac{21}{2}$</td>
<td>0</td>
<td>$-\frac{17}{8}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>-17</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$\frac{9}{2}$</td>
<td>0</td>
<td>-21</td>
<td>0</td>
<td>63</td>
<td>0</td>
<td>$-\frac{153}{2}$</td>
<td>0</td>
<td>$\frac{31}{2}$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0</td>
<td>-30</td>
<td>0</td>
<td>126</td>
<td>0</td>
<td>-255</td>
<td>0</td>
<td>155</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>$\frac{1}{2} \binom{n}{1}$</td>
<td>0</td>
<td>$-\frac{1}{4} \binom{n}{3}$</td>
<td>0</td>
<td>$\frac{1}{2} \binom{n}{5}$</td>
<td>0</td>
<td>$-\frac{17}{8} \binom{n}{7}$</td>
<td>0</td>
<td>$\frac{31}{2} \binom{n}{9}$</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Finally, by considering the case \(n = 2k \) we have the following from the last equation in (9).

Corollary 6 For even \(n (\in \mathbb{N}) \) we have

\[
\sum_{k=1}^{n/2} \sum_{k=1}^{n/2} \frac{(-1)^{k-1} 2}{2^k} \begin{vmatrix}
\binom{n}{1} & 2 & & \\
\binom{n}{3} & \binom{n-1}{2} & 2 & 0 \\
\binom{n}{5} & \binom{n-1}{4} & \binom{n-3}{2} & \ddots \\
\vdots & \vdots & \vdots & 2 \\
\binom{n}{2k-1} & \binom{n-1}{2k-2} & \binom{n-3}{2k-4} & \cdots & \binom{n-2k+3}{2}
\end{vmatrix}
\]

\[
= \sum_{k=1}^{n/2} (-1)^{k-1} \frac{(n - 2k - 1)!!}{(n - 1)!!} \begin{vmatrix}
\binom{n}{2} & \binom{n-1}{1} & & \\
\binom{n}{4} & \binom{n-1}{3} & \binom{n-3}{1} & 0 \\
\binom{n}{6} & \binom{n-1}{5} & \binom{n-3}{3} & \ddots \\
\vdots & \vdots & \vdots & \binom{n-2k+3}{1} \\
\binom{n}{2k} & \binom{n-1}{2k-1} & \binom{n-3}{2k-3} & \cdots & \binom{n-2k+3}{3}
\end{vmatrix}
\]

\[
= 1.
\]

References

Some Infinite Series of Fibonacci Numbers

By

Shin-ichi Katayama

Department of Mathematical and Natural Sciences,
Faculty of Integrated Arts and Sciences,
The University of Tokushima,
Minamijosanjima-cho 1-1, Tokushima 770-8502, JAPAN
e-mail address: katayama@ias.tokushima-u.ac.jp
(Received September 30, 2008)

Abstract

In his paper [1], J.G. Goggins has shown a simple formula which relates \(\pi \) and Fibonacci numbers. In this note, we shall prove a generalized formula (4) with some integer parameter \(k \). Then Goggins's formula can be regarded as the special case \(k = 1 \) of our new formula (4).

2000 Mathematics Subject Classification. Primary 11B39; Secondary 40A05, 11A99

Introduction

In [1], J.G. Goggins has shown the following simple but very interesting formula

\[
\frac{\pi}{4} = \sum_{n=1}^{\infty} \tan^{-1}(1/F_{2n+1)},
\]

(1)

where \(F_n \) is the \(n \)th Fibonacci number. This formula is also given as the formula (f) in the text [5] chapter 3. Firstly, we shall rewrite this formula to the following two forms. Since \(F_1 = 1 \) and \(\pi/4 = \tan^{-1}(1/F_1) \), (1) is equivalent to the following formula

\[
\frac{\pi}{2} = \sum_{n=0}^{\infty} \tan^{-1}(1/F_{2n+1}).
\]

(2)
From the facts $F_{-2k} = -F_{2k}$ and $F_{-2k-1} = F_{2k+1}$, (2) is also equivalent to the following formula

$$
\pi = \sum_{n=-\infty}^{\infty} \tan^{-1}(1/F_{2n+1}).
$$

(3)

The purpose of this short note is to generalize this formula to the following formula which holds for any integer parameter k,

$$
k\pi = \sum_{n=-\infty}^{\infty} \tan^{-1}(F_{2k}/F_{2n+1}).
$$

(4)

Remark. We note that, from the fact $F_2 = 1$, the above formula (3) is exactly the case $k = 1$ of this formula (4).

Let $\{G_n\}$ be generalized Fibonacci sequences which satisfy

$$
G_{n+2} = G_{n+1} + G_n.
$$

Using the induction on m, we can show the following addition theorem of G_ℓ.

Addition Theorem. (See for example [3]).

$$
G_{m+\ell} = F_mG_{\ell+1} + F_{m-1}G_\ell,
$$

for any integer m.

Substituting $G_{\ell+1} - G_{\ell-1}$ for G_ℓ, we have

$$
G_{m+\ell} = F_mG_{\ell+1} + F_{m-1}(G_{\ell+1} - G_{\ell-1}) = (F_m + F_{m-1})G_{\ell+1} - F_{m-1}G_{\ell-1}
$$

$$
= F_{m+1}G_{\ell+1} - F_{m-1}G_{\ell-1}.
$$

Thus we have obtained a modified version of this addition theorem.

Corollary 1.

$$
G_{m+\ell} = F_{m+1}G_{\ell+1} - F_{m-1}G_{\ell-1},
$$

for any integer m.

Let us consider the special case when $G = F$ and $\ell = 2n$ is even and $m = 2k - 1$ is odd in Corollary 1. Then we have $F_{2n+2k-1} = F_{2k}F_{2n+1} - F_{2k-2}F_{2n-1}$. Hence we have:

Corollary 2.

$$
F_{2k-2}F_{2n-1} + F_{2n+2k-1} = F_{2k}F_{2n+1}.
$$
Let us consider the special case when $G = F$ and $\ell = 2n$ is even and $m = -2n - 2k + 2$ in Corollary 1. Then we have $F_{-2k+2} = F_{-2n-2k+3}F_{2n+1} - F_{-2n-2k+1}F_{2n-1}$, which is equivalent to $-F_{2k-2} = F_{2n+2k-3}F_{2n+1} - F_{2n+2k-1}F_{2n-1}$. Thus we have shown:

Corollary 3.

\[F_{2n+2k-1}F_{2n-1} - F_{2k-2} = F_{2n+2k-3}F_{2n+1}. \]

Using these corollaries, we can show the following proposition.

Proposition.

\[
\tan^{-1}\left(\frac{F_{2k-2}}{F_{2n+2k-1}} \right) + \tan^{-1}\left(\frac{1}{F_{2n-1}} \right) = \tan^{-1}\left(\frac{F_{2k}}{F_{2n+2k-3}} \right).
\]

Proof. From Corollaries 2 and 3, we have

\[
\frac{F_{2k-2}}{F_{2n+2k-1}} + \frac{1}{F_{2n-1}} = \frac{F_{2k-2}F_{2n-1} + F_{2n+2k-1}}{F_{2n+2k-1}F_{2n-1} - F_{2k-2}} = \frac{F_{2k}F_{2n+1}}{F_{2n+2k-3}F_{2n+1}}
\]

\[= \frac{F_{2k}}{F_{2n+2k-3}}, \text{ which completes the proof.} \]

This proposition and the fact

\[\lim_{n \to \pm \infty} \tan^{-1}(F_{2n}/F_{2n+1}) = 0 \]

for any fixed m imply that

\[
\sum_{n=-\infty}^{\infty} \tan^{-1}\left(\frac{F_{2k-2}}{F_{2n+1}} \right) + \sum_{n=-\infty}^{\infty} \tan^{-1}\left(\frac{1}{F_{2n-1}} \right) = \sum_{n=-\infty}^{\infty} \tan^{-1}\left(\frac{F_{2k}}{F_{2n+1}} \right).
\]

Put $A(k) = \sum_{n=-\infty}^{\infty} \tan^{-1}\left(\frac{F_{2k}}{F_{2n+1}} \right)$. Then this relation can be written as

\[A(k - 1) + A(1) = A(k). \quad (5) \]

We note that $A(1) = \pi$ from the formula (3). Then, from this relation (5) and
the induction on k, we can show the infinite series $A(k)$ is convergent for any integer k. Using the same relation (5), we can also verify that $A(k)$ satisfies the formula (4). Now we have completed the proof of the following theorem.

Theorem. With the above notations, we have

$$\sum_{n=-\infty}^{\infty} \tan^{-1}(F_{2k}/F_{2n+1}) = k\pi,$$

or equivalently

$$\sum_{n=0}^{\infty} \tan^{-1}(F_{2k}/F_{2n+1}) = \frac{k\pi}{2}$$

for any integer k.

References

On Some Formulas for $\pi/2$

By

Shin-ichi Katayama

Department of Mathematical and Natural Sciences,
Faculty of Integrated Arts and Sciences,
The University of Tokushima,
Minamijosanjima-cho 1-1, Tokushima 770-8502, JAPAN
e-mail address: katayama@ias.tokushima-u.ac.jp
(Received September 30, 2008)

Abstract

In his paper [1], J.G. Goggins has shown a formula which relates π and Fibonacci numbers. In our paper [2], we have proved a generalized version of this formula. In this note, we shall prove formulas which generalize Fibonacci number to certain binary recurrence sequences.

2000 Mathematics Subject Classification. Primary 11B39;
Secondary 40A05, 11A99

Introduction

In [1], J.G. Goggins has shown the following simple but very interesting formula

$$\frac{\pi}{4} = \sum_{n=1}^{\infty} \tan^{-1}(1/F_{2n+1}), \tag{1}$$

where F_n is the nth Fibonacci number. We note this formula is also given as the formula (f) in the text [5] chapter 3. Since $F_1 = 1$, we see $\frac{\pi}{4} = \tan^{-1}(1/F_1)$. Thus (1) is equivalent to the following formula

$$\frac{\pi}{2} = \sum_{n=0}^{\infty} \tan^{-1}(1/F_{2n+1}) \tag{2}.$$

The purpose of this short note is to generalize this formula on Fibonacci number to two formulas on binary recurrence sequences, that is, to the following
two formulas

\[\frac{\pi}{2} = \sum_{n=0}^{\infty} \tan^{-1}(t/u_{2n+1}), \]
(3)

\[\frac{\pi}{2} = \sum_{n=-\infty}^{\infty} \tan^{-1}(t/v_n). \]
(4)

Here \(\{u_n\} \) is the Lucas sequences associated to the parameter \((t, -1) \) and \(\{v_n\} \) is the companion Lucas sequences associated to the parameter \((t, -1) \), respectively.

First of all, let us recall the fundamental properties of \(u_n \) and \(v_n \). Let \(t \) be a positive integer and \(\{u_n\} \) and \(\{v_n\} \) be the binary recurrence sequences defined by putting

\[
\begin{align*}
 u_{n+2} &= tu_{n+1} + u_n, \\
v_{n+2} &= tv_{n+1} + v_n,
\end{align*}
\]

with initial terms \(u_0 = 0, u_1 = 1 \) and \(v_0 = 2, v_1 = t \).

Put \(\varepsilon = (t + \sqrt{t^2 + 4})/2 \) and \(\bar{\varepsilon} = (t - \sqrt{t^2 + 4})/2 \). Then one knows the following Binet’s formula

\[
\begin{align*}
 u_n &= (\varepsilon^n - \bar{\varepsilon}^n)/\sqrt{t^2 + 4}, \\
v_n &= \varepsilon^n + \bar{\varepsilon}^n.
\end{align*}
\]

Put \(\alpha_{2n} = \tan^{-1}(1/u_{2n}) \) and \(\alpha_{2n-1} = \tan^{-1}(t/u_{2n-1}) \) for any positive index \(n \). Then we can show the following proposition.

Proposition 1. For any integer \(n \geq 1 \), \(\alpha_{2n} = \alpha_{2n+1} + \alpha_{2n+2} \).

Proof. We have

\[\tan(\alpha_{2n+1} + \alpha_{2n+2}) = \frac{t/u_{2n+1} + 1/u_{2n+2}}{1 - t/(u_{2n+1}u_{2n+2})} = \frac{tu_{2n+2} + u_{2n+1}}{u_{2n+1}u_{2n+2} - t} \]

By virtue of the Binet’s formula, we see

\[u_{2n+1}u_{2n+2} - t = (\varepsilon^{2n+1} - \bar{\varepsilon}^{2n+1})(\varepsilon^{2n+2} - \bar{\varepsilon}^{2n+2})/(t^2 + 4) - t \]

\[= (\varepsilon^{4n+3} + \bar{\varepsilon}^{4n+3} + \varepsilon + \bar{\varepsilon})/(t^2 + 4) - t = (\varepsilon^{4n+3} + \bar{\varepsilon}^{4n+3} - t^3 - 3t)/(t^2 + 4). \]
On the other hand, we also have

\[u_{2n}u_{2n+3} = (\varepsilon^{2n} - \varepsilon^{2n})(\varepsilon^{2n+3} - \varepsilon^{2n+3})/(t^2 + 4) \]

\[= (\varepsilon^{4n+3} + \varepsilon^{4n+3} - \varepsilon^3 - \varepsilon^3)/(t^2 + 4) = (\varepsilon^{4n+3} + \varepsilon^{4n+3} - t^3 - 3t)/(t^2 + 4). \]

Thus we have shown

\[\tan(\alpha_{2n+1} + \alpha_{2n+2}) = \frac{1}{u_{2n}} = \tan(\alpha_{2n}), \]

which completes the proof.

From this proposition, we have \(\alpha_{2n} - \alpha_{2n+2} = \alpha_{2n+1} \) for any \(n \geq 1 \). Then we have

\[\sum_{n=1}^{\infty} \tan^{-1}(t/u_{2n+1}) = \sum_{n=1}^{\infty} \alpha_{2n+1} = \sum_{n=1}^{\infty} (\alpha_{2n} - \alpha_{2n+2}) \]

\[= (\alpha_2 - \alpha_4) + (\alpha_4 - \alpha_6) + \cdots + (\alpha_{2n} - \alpha_{2n+2}) + \cdots = \alpha_2. \]

Since \(\alpha_2 = \tan^{-1}(1/t) = \frac{\pi}{2} - \tan^{-1}(t/u_1) \), we have shown the formula (3).

Now we shall show the formula (4) similarly. Put \(\beta_{2n} = \tan^{-1}(t/v_{2n}) \) and \(\beta_{2n-1} = \tan^{-1}(2/v_{2n-1}) \) for any positive index \(n \). Then we can show the following proposition.

Proposition 2. For any integer \(n \geq 1 \), \(2\beta_{2n} = \beta_{2n-1} - \beta_{2n+1} \).

Proof. We have

\[\tan(\beta_{2n-1} - \beta_{2n+1}) = \frac{2/v_{2n-1} - 2/v_{2n+1}}{1 + 4/(v_{2n-1}v_{2n+1})} = \frac{2(v_{2n+1} - v_{2n-1})}{v_{2n-1}v_{2n+1} + 4} \]

\[= \frac{2tv_{2n}}{v_{2n-1}v_{2n+1} + 4}. \]

By virtue of the Binet’s formula, we see

\[v_{2n-1}v_{2n+1} + 4 = (\varepsilon^{2n+1} + \varepsilon^{2n+1})(\varepsilon^{2n-1} + \varepsilon^{2n-1}) + 4 \]

\[= (\varepsilon^{4n} + \varepsilon^{4n}) - (\varepsilon^2 + \varepsilon^2) + 4 = (\varepsilon^{4n} + \varepsilon^{4n}) - (t^2 + 2) + 4 \]

\[= (\varepsilon^{2n} + \varepsilon^{2n})^2 - t^2 = v_{2n}^2 - t^2. \]
On the other hand, we have

\[
\tan(2\beta_{2n}) = \frac{t/v_{2n} + t/v_{2n}}{1 - (t/v_{2n})^2} = \frac{2tv_{2n}}{v_{2n}^2 - t^2}.
\]

Thus we have shown

\[
\tan(\beta_{2n-1} - \beta_{2n+1}) = \tan(2\beta_{2n}),
\]

which completes the proof.

From this proposition, we have \(\beta_{2n-1} - \beta_{2n+1} = 2\beta_{2n}\) for any \(n \geq 1\).

Then we have

\[
\sum_{n=1}^{\infty} 2 \tan^{-1}(t/v_{2n}) = \sum_{n=1}^{\infty} 2\beta_{2n} = \sum_{n=1}^{\infty} (\beta_{2n-1} - \beta_{2n+1}) = \beta_1 = \tan^{-1}(2/t).
\]

Since \(v_{-2n} = v_{2n}\), one knows that \(\tan^{-1}(t/v_{-2n}) = \tan^{-1}(t/v_{2n})\).

Hence we have

\[
\sum_{n=-\infty}^{\infty} \tan^{-1}(t/v_{2n}) = 2 \left(\sum_{n=1}^{\infty} \tan^{-1}(t/v_{2n}) \right) + \tan^{-1}(t/v_0)
= \tan^{-1}(2/t) + \tan^{-1}(t/2) = \frac{\pi}{2},
\]

which completes the proof of (4).

Now we have completely proved two formulas of (4), which we shall state as the following theorem.

Theorem. With the above notations, we have the following formulas,

\[
\frac{\pi}{2} = \sum_{n=0}^{\infty} \tan^{-1}(t/u_{2n+1}),
\]

\[
\frac{\pi}{2} = \sum_{n=-\infty}^{\infty} \tan^{-1}(t/v_{2n}).
\]
References

Existence of Global and Bounded Solutions for Damped Sublinear Wave Equations

By

Kosuke Ono *

Department of Mathematical and Natural Sciences
The University of Tokushima
Tokushima 770-8502, JAPAN
e-mail: ono@ias.tokushima-u.ac.jp
(Received September 30, 2008)

Abstract

We study the initial–boundary value problem for the sublinear wave equations with a linear damping: $u'' - \Delta u - \omega \Delta u' + \delta u' = \gamma |u|^{p-2} u$ with the homogeneous Dirichlet boundary condition and $H^1_0(\Omega) \times L^2(\Omega)$-data condition under $\omega \geq 0$ and $\delta > -\omega \lambda_1$. When $1 < p < 2$, we show that the (local) weak solutions are global and uniformly bounded in time $t \geq 0$.

2000 Mathematics Subject Classification. 35L70

1 Introduction

We consider the initial-boundary value problem for the following semilinear wave equation:

$$u'' - \Delta u - \omega \Delta u' + \delta u' = f(u), \quad u = u(x,t), \quad \text{in } \Omega \times [0, \infty)$$

(1)

with homogeneous Dirichlet boundary condition

$$u = 0 \quad \text{on } \partial \Omega$$

and initial conditions

$$u(x,0) = u_0(x) \quad \text{and} \quad u'(x,0) = u_1(x),$$

where Ω is a bounded domain in \mathbb{R}^N with smooth boundary $\partial \Omega$, $\prime = \partial / \partial t$, $\Delta = \nabla \cdot \nabla = \sum_{j=1}^{N} \partial^2 / \partial x_j^2$ is Laplacian, ω and δ are constants such that $\omega \geq 0$

*This work was in part supported by Grant-in-Aid for Scientific Research (C) of JSPS (Japan Society for the Promotion of Science).
and \(\delta > -\omega \lambda_1 \) with \(\lambda_1 \) being the first eigenvalue of the operator \(-\Delta\) under the homogeneous Dirichlet boundary condition, that is,

\[
\lambda_1 = \inf_{u \in H^1_0(\Omega) \setminus \{0\}} \frac{\|\nabla u\|^2}{\|u\|^2},
\]

and

\[
f(u) = \gamma |u|^{p-2}u, \quad \gamma > 0, \quad p > 1. \tag{2}
\]

In the superlinear case \((p > 2)\), it is well known that the so-called potential well method is useful to the analysis of global existence for problem (1). (see Sattinger [21], Tsutsumi [23], Payne-Sattinger [20], and also, [8], [9], [14], [18]), and moreover, the concavity method is applied to the analysis of finite time blow-up phenomena (see Tsutsumi [23], Levine [10], [11], and also, [1], [2], [3], [7], [13], [15], [16], [22]).

In order to explain some known results for \(p > 2\), we define the total energy associated with (1) by

\[
E(u, u') = \frac{1}{2} \|u'\|^2 + J(u)
\]

where we put

\[
J(u) = \frac{1}{2} \|\nabla u\|^2 - \frac{\gamma}{p} \|u\|^p_p
\]

\[
= \left(\frac{1}{2} - 1 - \frac{1}{p} \right) \|\nabla u\|^2 + \frac{1}{p} I(u)
\]

with

\[
I(u) = \|\nabla u\|^2 - \gamma \|u\|^p_p,
\]

and we define the mountain pass level \(d\) (also known as the potential well depth) by

\[
d = \inf_{u \in H^1_0(\Omega) \setminus \{0\}} \left(\sup_{\lambda \geq 0} J(\lambda u) \right)
\]

(see Sattinger [21], Tsutsumi [23], Payne-Sattinger [20]).

When the power \(p\) in (2) satisfies that \(p > 2\) and \(p \leq 2(N-1)/(N-2)\) if \(N \geq 3\), many authors have already studied on global existence or finite time blow-up of (local) weak solutions in the class \(C([0, T); H^1_0(\Omega)) \cap C^1([0, T); L^2(\Omega))\) for the problem (1) with the initial data \((u_0, u_1) \in H^1_0(\Omega) \times L^2(\Omega)\) satisfying suitable conditions: (i) if \(E(u_0, u_1) < d\) and \(I(u_0) > 0\), then there exists a unique global solution \(u(t)\) satisfying \(\|u(t)\|_{H^1} + \|u'(t)\| \to 0\) as \(t \to \infty\); (ii) if \(E(u_0, u_1) < d\) and \(I(u_0) < 0\), then the local solution \(u(t)\) blows up at some finite time, that
is, there exists a finite time $T^* < \infty$ such that $\|u(t)\|_{H^1} \to \infty$ as $t \to T^*$; moreover (iii) when $\omega = 0$, if $E(u_0, u_1) \geq d$, $I(u_0) < 0$, $\|u_0\| \geq \sup\{\|\phi\| \mid \phi \in H^1_0(\Omega) \setminus \{0\}\}$ with $(1/2 - 1/p) \|\nabla \phi\|^2 \leq E(u_0, u_1)$, and $\int_0^t u_0 u_1 \, dx \geq 0$, then the local solution $u(t)$ blows up at some finite time (see Gazzola-Squassina [5]). We note that if $E(u(t), u'(t)) \geq d$ for all $t \geq 0$, then $\lim_{t \to \infty} E(u(t), u'(t))$ exists, and when $\omega = 0$, $p > 2$, and $p < 2(N-1)/(N-2)$ if $N \geq 3$ or $p \leq 6$ if $N = 2$, the local solution $u(t)$ is global and bounded (see Esquivel-Avila [4]).

On the other hand, when the power p in (2) satisfies that $1 < p \leq 2$, we see that for the initial data $(u_0, u_1) \in H^1_0(\Omega) \times L^2(\Omega)$, the (local) weak solution $u(t)$ in the class $C([0,T); H^1_0(\Omega)) \cap C^1([0,T); L^2(\Omega))$ is global. In particular, from Remark 3.10 in Gazzola and Squassina [5], we know that the global solution $u(t)$ satisfies

$$
\|u(t)\|_{H^1} + \|u'(t)\| \leq C(1 + t)^{p/(4-2p)} \quad \text{if } p < 2 \\
\|u(t)\|_{H^1} + \|u'(t)\| \leq C e^{\alpha t} \quad \text{if } p = 2
$$

with some $\alpha > 0$, for $t \geq 0$, but we can not know boundedness of global solutions.

The purpose of this paper is to show boundedness of global solutions of (1) in the case $1 < p < 2$ (i.e. sublinear case).

Our main result is as follows.

Theorem 1.1 Let $1 < p < 2$, and let $\omega \geq 0$ and $\delta > -\omega \lambda_1$. Suppose that the initial data (u_0, u_1) belong to $H^1_0(\Omega) \times L^2(\Omega)$. Then, the problem (1) admits a unique global solution $u(t)$ in the class $C([0,\infty); H^1_0(\Omega)) \cap C^1([0,\infty); L^2(\Omega))$ satisfying

$$
\|u(t)\|_{H^1} + \|u'(t)\| \leq C + CI_0 e^{-kt}
$$

with some constants $C > 0$, $\tilde{k} > 0$, and $I_0 = \|\nabla u_0\| + \|u_1\|$, for $t \geq 0$.

On the other hand, in the case $p = 2$ we have the following.

Theorem 1.2 Let $p = 2$, and let $\omega \geq 0$ and $\delta > -\omega \lambda_1$. Suppose that the initial data (u_0, u_1) belong to $H^1_0(\Omega) \times L^2(\Omega)$. Then, the problem (1) admits a unique global solution $u(t)$ in the class $C([0,\infty); H^1_0(\Omega)) \cap C^1([0,\infty); L^2(\Omega))$ satisfying that $\|u(t)\|_{H^1} + \|u'(t)\| \leq C I_0 e^{\alpha t}$, and moreover, if $\gamma < \lambda_1$,

$$
\|u(t)\|_{H^1} + \|u'(t)\| \leq C I_0 e^{-\hat{\alpha} t}
$$

with some constants $C > 0$, $\hat{\alpha} > 0$, $\tilde{k} > 0$, and $I_0 = \|\nabla u_0\| + \|u_1\|$, for $t \geq 0$.

We use only familiar functional spaces and omit the definitions. We denote $L^p(\Omega)$-norm by $\| \cdot \|_p$ (we often write $\| \cdot \| = \| \cdot \|_2$ for simplicity). Positive constants will be denoted by C and will change from line to line.
2 Proofs

By applying the Banach contraction mapping theorem, we obtain the following local existence theorem (e.g. see [6], [12], [17], [19]).

Proposition 2.1 Let $p > 1$ and $p < 2(N - 1)/(N - 2)$ if $N \geq 3$. Suppose that the initial data (u_0, u_1) belong to $H^1_0(\Omega) \times L^2(\Omega)$. Then, there exists a unique (local) weak solution $u(t)$ in the class $C([0,T); H^1_0(\Omega)) \cap C^1([0,T); L^2(\Omega))$ of problem (1), that is,

$$
\frac{d}{dt} \int_{\Omega} \nabla u(t) \cdot \nabla w \, dx + \int_{\Omega} \nabla u(t) \cdot \nabla x \, dx + \omega \int_{\Omega} \nabla u'(t) \cdot \nabla w \, dx
+ \delta \int_{\Omega} u'(t) w \, dx = \int_{\Omega} f(u(t)) w \, dx
$$

a.e. in $(0, T)$ for every $w \in H^1_0(\Omega)$.

Moreover, if $\sup_{0 \leq t \leq T} (\|u(t)\|_{H^1} + \|u'(t)\|) < \infty$, then the solution $u(t)$ can be continued to $T + \varepsilon$ for some $\varepsilon > 0$.

Proof of Theorem 1.1. Multiplying (1) by u' and integrating it over Ω, we have

$$
\frac{d}{dt} E_1(t) + \omega \|\nabla u'(t)\|^2 + \delta \|u'(t)\|^2 = \int_{\Omega} f(u(t)) u'(t) \, dx,
$$

(3)

where $E_1(t)$ is defined by

$$
E_1(t) = E_1(u(t), u'(t)) = \frac{1}{2} (\|u'(t)\|^2 + \|\nabla u(t)\|^2).
$$

And, multiplying (1) by u and integrating it over Ω, we have

$$
\frac{d}{dt} \frac{1}{2} \left(\omega \|\nabla u(t)\|^2 + \delta \|u(t)\|^2 + 2 \int_{\Omega} u(t) u'(t) \, dx \right) + \|\nabla u(t)\|^2 - \|u'(t)\|^2 = \int_{\Omega} f(u(t)) u(t) \, dx
$$

(4)

Then, taking (3) + $\varepsilon \times (4)$ for any small $\varepsilon > 0$, we have

$$
\frac{d}{dt} F_1(t) + G_1(t) = \int_{\Omega} f(u(t)) (u'(t) + \varepsilon u(t)) \, dx,
$$

(5)

where $F_1(t)$ and $G_1(t)$ are defined by

$$
F_1(t) = E_1(t) + \frac{\varepsilon}{2} \left(\omega \|\nabla u(t)\|^2 + \delta \|u(t)\|^2 + 2 \int_{\Omega} u(t) u'(t) \, dx \right)
$$
and
\[G_1(t) = (\omega \|\nabla u'(t)\|^2 + \delta \|u'(t)\|^2) + \varepsilon (\|\nabla u(t)\|^2 - \|u(t)\|^2). \]

Here, it is easy to see from the Cauchy inequality and the Poincaré inequality that
\[F_1(t) \leq C(\|u'(t)\|^2 + \|\nabla u(t)\|^2) \tag{6} \]
and
\[G_1(t) \geq (\delta + \omega \lambda_1 - \varepsilon) \|u'(t)\|^2 + \varepsilon \|\nabla u(t)\|^2. \tag{7} \]
Thus, if \(\delta + \omega \lambda_1 > 0 \), choosing small \(\varepsilon > 0 \), we have from (5)–(7) that
\[\frac{d}{dt} F_1(t) + 2kF_1(t) \leq \int_{\Omega} f(u(t)) (u'(t) + \varepsilon u(t)) \, dx \tag{8} \]
with some constant \(k > 0 \). Moreover, we observe from the Young inequality and the Poincaré inequality with \(p < 2 \) that
\[
\int_{\Omega} f(u(t)) (u'(t) + \varepsilon u(t)) \, dx \leq C \|u'(t)\|_p \|u(t)\|_p^{p-1} + C \|u(t)\|_p^p \\
\leq C \|u'(t)\|_p \|\nabla u(t)\|^{p-1} + C \|\nabla u(t)\|^p \tag{9}
\]
and by \(\delta + \omega \lambda_1 > 0 \),
\[
F_1(t) \geq E_1(t) + \frac{\varepsilon}{2} ((\delta + \omega \lambda_1) \|u(t)\|^2 - 2\|u(t)\|\|u'(t)\|) \\
\geq \frac{1}{2} (1 - C\varepsilon) \|u'(t)\|^2 + \frac{1}{2} \|\nabla u(t)\|^2. \tag{10}
\]
Thus, choosing small \(\varepsilon > 0 \), we have from (8)–(10) that
\[\frac{d}{dt} F_1(t) + 2kF_1(t) \leq CF_1(t)^{p/2} \leq kF_1(t) + C, \]
where we used the Young inequality together with the fact that \(1/2 < p/2 < 1 \) at the last inequality, and hence,
\[F_1(t) \leq \frac{C}{k} + F_1(0)e^{-kt}. \tag{11} \]

Therefore, we obtain from (10) and (11) that
\[\|u'(t)\|^2 + \|\nabla u(t)\|^2 \leq CF_1(t) \leq C + CT_0^2e^{-kt} \]
for \(t \geq 0. \) \(\square \)
Proof of Theorem 1.2. Since \(p = 2 \) in (2), we have from (3) and the Poincaré inequality that

\[
\frac{d}{dt} E_1(t) \leq \gamma \|u(t)\| \|\nabla u(t)\| \leq \alpha E_1(t)
\]

with some constant \(\alpha > 0 \), and hence, we have

\[
\|u'(t)\|^2 + \|\nabla u(t)\|^2 \leq 2E_1(0)e^{\alpha t}
\]

for \(t \geq 0 \).

Next, let \(\gamma < \lambda_1 \). Since \(p = 2 \) in (2), we have from (3) and (4) that

\[
\frac{d}{dt} E(t) + \omega \|\nabla u'(t)\|^2 + \delta \|u'(t)\|^2 = 0
\]

(12)

and

\[
\frac{d}{dt} \frac{1}{2} \left(\omega \|\nabla u(t)\|^2 + \delta \|u(t)\|^2 + 2 \int_{\Omega} u(t)u'(t) \, dx \right) + \|\nabla u(t)\|^2 - \gamma \|u(t)\|^2 - \|u'(t)\|^2 = 0,
\]

(13)

respectively, where we write

\[
E(t) = E_1(t) - \frac{\gamma}{2} \|u(t)\|^2 = \frac{1}{2} \left(\|u'(t)\|^2 + \|\nabla u(t)\|^2 - \gamma \|u(t)\|^2 \right)
\]

for simplicity. Then, taking (12) + \(\varepsilon \times (13) \) for any small \(\varepsilon > 0 \), we have

\[
\frac{d}{dt} F(t) + G(t) = 0
\]

(14)

where \(F(t) \) and \(G(t) \) are defined by

\[
F(t) = E(t) + \frac{\varepsilon}{2} \left(\omega \|\nabla u(t)\|^2 + \delta \|u(t)\|^2 + 2 \int_{\Omega} u(t)u'(t) \, dx \right)
\]

and

\[
G(t) = \left(\omega \|\nabla u'(t)\|^2 + \delta \|u'(t)\|^2 \right) + \varepsilon \left(\|\nabla u(t)\|^2 - \gamma \|u(t)\|^2 - \|u'(t)\|^2 \right).
\]

Here, it is easy to see from the Cauchy inequality and the Poincaré inequality that

\[
F(t) \leq C(\|u'(t)\|^2 + \|\nabla u(t)\|^2)
\]

(15)

and

\[
G(t) \geq (\delta + \omega \lambda_1 - \varepsilon)\|u'(t)\|^2 + \varepsilon(1 - \gamma/\lambda_1)\|\nabla u(t)\|^2.
\]

(16)
Thus, if $\delta + \omega \lambda_1 > 0$, choosing small $\varepsilon > 0$, we have from (14)–(16) that

$$\frac{d}{dt} F(t) + kF(t) \leq 0$$

with some constant $k > 0$. Moreover, we observe from the Young inequality and the Poincaré inequality that

$$F(t) \geq \frac{1}{2} \left(||u'(t)||^2 + (1 - \gamma/\lambda_1) ||\nabla u(t)||^2 \right)$$

$$+ \frac{\varepsilon}{2} \left((\delta + \omega \lambda_1) ||u(t)||^2 - 2||u(t)|| ||u'(t)|| \right)$$

$$\geq \frac{1}{2} (1 - C\varepsilon) ||u'(t)||^2 + \frac{1}{2} (1 - \gamma/\lambda_1) ||\nabla u(t)||^2.$$ \hspace{1cm} (18)

Thus, choosing small $\varepsilon > 0$, we have from (17) and (18) that

$$||u'(t)||^2 + ||\nabla u(t)||^2 \leq CF(t) \leq CF(0)e^{-kt}$$

for $t \geq 0$. \hspace{1cm} \square

References

A Numerical Method for Distinction between Blow-up and Global Solutions of the Nonlinear Heat Equation

By

Hideo Sakaguchi and Hitoshi Imai

Institute of Technology and Science, The University of Tokushima
Minami-josanjima, Tokushima 770-8506, JAPAN
E-mail address: sakapm.tokushima-u.ac.jp
imai@pm.tokushima-u.ac.jp
(Received September 30, 2008)

Abstract

The famous one-dimensional nonlinear heat equation is considered. To this equation a numerical method for distinction between blow-up and global solutions is proposed. Difficulty is in the treatment of the global solution which is defined in the infinite interval. The bounded transform is used to overcome this difficulty. Numerical experiments show the validity of our method.

2000 Mathematics Subject Classification. 65-05, 65M70

Introduction

Following the unique paper[7] there have been a lot of preceding researches on blow-up solutions for nonlinear heat equations. In the paper, the initial and boundary value problem governed by the famous one-dimensional nonlinear heat equation as follows:

Problem 1 For two parameters $\alpha \geq 0$, and $T > 0$, find $u(t, x)$ such that

\begin{align*}
 u_t &= u_{xx} + u^2, & 0 < t < T, \quad 0 < x < 1, \\
 u(t, 0) &= 0, & 0 \leq t < T, \\
 u(t, 1) &= 0, & 0 \leq t < T, \\
 u(0, x) &= \alpha \sin \pi x, & 0 < x < 1.
\end{align*}

Numerical methods have been proposed to such a problem with the blow-up solution [14, 3, 9, 4]. They adopt the adaptive control on the time increment, i.e.
the time increment varies depending on the solution. This technique is useful for the computation of the blow-up time. The blow-up time T_b in Problem 1 with $\alpha = 100$ was computed to be approximately 0.01098[9].

By the way, it is well-known that Problem 1 has global solutions for small initial data and blow-up solutions for large initial data[7, 5, 6, 12, 13]. Numerical results by FDM+EE mentioned in §1 shows these situations(Fig.1).

For $\alpha = 100$ overflow easily occurs beyond $t = 0.0109$, so Fig.1(a) is recognized to show the profile of the blow-up solution. On the other hand, without any theoretical results it is vague that Fig.1(b) show the profile of the global decreasing solution because numerical computation is local.

In the paper a numerical method for distinction between blow-up and global solutions is proposed. Difficulty is global computation in time. To overcome this difficulty the bounding transform[10] is adopted. For precise numerical computation spectral collocation method is adopted. This method may offer new possibility of computation of the blow-up time.

1 Our numerical method

We consider the more complicated problem which is derived from Problem 1 by using the following transformations:

$$\tau = t/\beta, \quad \dot{u}(\tau, x) = \beta u(t, x)$$

where β is a positive constant. Then, Problem 2 is obtained.
Section 2 Distinction between Blow-up and Global Solutions

Problem 2 For three parameters $\alpha \geq 0$, $\beta > 0$, and $T > 0$, find $\bar{u}(\tau, x)$ such that

\[
\bar{u}_\tau = \beta \bar{u}_{xx} + \bar{u}^2, \quad 0 < \tau < T/\beta, \quad 0 < x < 1,
\]
\[
\bar{u}(\tau, 0) = 0, \quad 0 \leq \tau < T/\beta,
\]
\[
\bar{u}(\tau, 1) = 0, \quad 0 \leq \tau < T/\beta,
\]
\[
\bar{u}(0, x) = \beta \alpha \sin \pi x, \quad 0 < x < 1.
\]

If $\beta = 1$ Problem 2 is equivalent to Problem 1. For small β the blow-up time $\tau_b(= T_b/\beta)$ becomes large. In this case numerical distinction that the solution is the global one or the blow-up one becomes difficult. For example, $T_b = 0.11$ in Problem 1 corresponds to $\tau_b = 0.11 \times 10^8$ in Problem 2 with $\beta = 10^{-8}$. The following bounding transform on τ is introduced for the treatment of the global solution[10].

\[
\tau = \frac{s}{1 - s^2} \left(s(\tau) = \frac{2\tau}{1 + \sqrt{1 + 4\tau^2}} \right).
\]

The interval $[0, \infty)$ on τ is mapped onto the interval $[0, 1)$ on s. From this transform Problem 2 becomes the following Problem 3.

Problem 3 For three parameters $\alpha \geq 0$, $\beta > 0$, and $T > 0$, find $\bar{u}(\tau, x)$ such that

\[
\bar{u}_s = \frac{1 + s^2}{(1 - s^2)^2} (\beta \bar{u}_{xx} + \bar{u}^2), \quad 0 < s < s(T/\beta), \quad 0 < x < 1,
\]
\[
\bar{u}(s, 0) = 0, \quad 0 \leq s < s(T/\beta),
\]
\[
\bar{u}(s, 1) = 0, \quad 0 \leq s < s(T/\beta),
\]
\[
\bar{u}(0, x) = \beta \alpha \sin \pi x, \quad 0 < x < 1.
\]

This problem is defined in the bounded domain and $s(T/\beta) = 1$ means $T = \infty$. Thus, the global solution in Problem 2 can be computed by solving Problem 3.

Our method for distinction between blow-up and global solutions is as follows.

Numerical computation is carried out by two types of discretization. One is FDM@EE(second order finite difference method in space and first order explicit Euler method in time) and another is SCM(spectral collocation method) which is easily applicable to nonlinear problems[2]. In SCM Chebyshev-Gauss-Lobatto(CGL) collocation points are used in space, and Chebyshev-Gauss-Radau(CGR) collocation points or CGL points are used in time. Discretized equations by SCM are nonlinear, so Newton method is used for solving them. If
exponential convergence of numerical solutions by SCM is obtained, then (converged) numerical solutions are very accurate and reliable [2, 11]. In FDM⊕EE the adaptive control on the time increment is not used for global computing. FDM⊕EE is so simple that it is firstly applied for rough numerical computation.

Concrete procedure is as follows:

0) Set \(s_l = 0 \) and choose the time increment \(\Delta s(>0) \) for EE adequately.

1) For \(s_l \leq s \) compute the solution profile by using FDM⊕EE. If necessary \(\Delta s \) may be varied or multiple precision is adopted. (If overflow occurs at \(s = s_e (< 1) \) then the solution is probably of the blow-up type. If numerical computation works well until \(s = s_e = 1 \) then the solution is probably of the global type.)

2) Referring the solution profile obtained for \(s_l \leq s \leq s_e \) in the above step 1), choose the interval \([s_l, s_r](s_r \leq s_e)\) where the profile seems to be smooth and carry out numerical computation by SCM in this interval. \(s_r (\leq s_e) \) should be chosen for realizing exponential convergence. In this interval there is no blow-up solution. In the case where \(s_r < 1 \) and Newton method does not converge determination of the blow-up solution is done referring the solution profile.

3) If distinction between blow-up and global solutions can not be clear in the above step 2), set \(s_l = s_r \) and go to the step 1) with the initial data at \(s = s_r \) that is computed in the step 2).

The above procedure is not rigorous. In the practical situation trial and error is inevitable.

We should remark that our method is not perfect. For example, the grow-up solution in Problem 2 becomes the discontinuous solution at \(s = 1 \) in Problem 3. Numerical computation to such a solution is very difficult [16]. However, our method can realize global numerical computation and it may offer a new field of numerical analysis.

2 Numerical results

Numerical computation is basically carried out in double precision. However, some results are computed in multiple precision [8].

In SCM \(N_s, N_x \) denote approximation orders on the time and space variables, respectively. In FDM⊕EE \(N_s, N_x \) denote division numbers on the time and space variables, respectively. \(\Delta s = 2/N_s, \Delta x = 2/N_x \). Moreover, \(N_x = 20 \) in FDM⊕EE because FDM⊕EE is used only for rough computation of the
solution profile. The following Err_N is used for checking the convergence of solutions by SCM.

$$Err_N = \max_{0 \leq i, j \leq 50} \frac{|v_N(s_j, x_i) - v_{N+10}(s_j, x_i)|}{\max_{0 \leq i, j \leq 50} |v_{N+10}(s_j, x_i)|},$$

where $v_N(s_j, x_i)$ is the interpolant for the data $\tilde{u}(s_j, x_i)$ which is computed in $0 \leq x \leq 1, s_l \leq s \leq s_e$ by SCM with $N = N_x = N_s$. s_j is the CGL or CGR points. x_i is the CGL points. In SCM discretized equations are nonlinear, so Newton method is used. The convergence of Newton method is determined whether the absolute relative difference of numerical solutions is smaller than $\varepsilon(\varepsilon = 10^{-13}$ in double precision, $\varepsilon = 10^{-47}$ in 50 digits) or not in 20 iterations.

(i) In the case of $\beta = 1$.

Numerical results for $\alpha = 1$ by FDM⊕EE are shown in Fig.2 and Table 1.

![Solution profile by FDM⊕EE](image)

Table 1. Overflow time

<table>
<thead>
<tr>
<th>Δs</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5×10^{-4}</td>
<td>0.6235</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>0.8269</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>0.94328</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>0.981787</td>
</tr>
</tbody>
</table>

Fig. 2. Solution profile by FDM⊕EE ($\beta = 1, \alpha = 1, N_x = 20, \Delta s = 5 \times 10^{-4}$).

Table 1 shows that the overflow time approaches to 1 as Δs becomes small. So, the solution profile in Fig.2 seems to be one of the blow-up solution. Then, numerical computation by SCM with CGL points on x and CGR points on s is carried out for $0 \leq s < 1$(Fig.3).
Fig. 3. Numerical results by SCM with CGL⊕CGR($\beta = 1$, $\alpha = 1$).

Fig.3(b) shows exponential convergence of numerical solutions. So, the converged numerical solution is recognized to be reliable. Fig.3(c) shows that values of numerical solutions at $s = 1$($T = \infty$ in Problem 1 or 2) converge to 0, then it suggests the existence of the global decreasing solution for $\beta = 1$, $\alpha = 1$.

Numerical results for $\alpha = 100$ by FDM⊕EE are shown in Fig.4 and Table 2. From Table 2 the overflow time approaches to a constant $s_b < 1$ as Δs becomes small. This suggests the existence of the blow-up solution with the blow-up time s_b. Thus, numerical computation by SCM with CGL points is carried out for $0 \leq s \leq 0.0109$(Fig.5). The interval on s is divided in numerical computation for realizing exponential convergence(Figs.5(a-2),(b-2)). Fig.5(c) is obtained by joining Figs.5(a) and (b).
Distinction between Blow-up and Global Solutions

Fig. 4. Solution profile by FDM±EE
($\beta = 1, \alpha = 100, N_x = 20, \Delta s = 5 \times 10^{-4}$).

Table 2. Overflow time
($\beta = 1, \alpha = 100, N_x = 20$).

<table>
<thead>
<tr>
<th>Δs</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5×10^{-4}</td>
<td>0.0175</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>0.0124</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>0.01113</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>0.010983</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>0.0109666</td>
</tr>
</tbody>
</table>

(a-1) Solution profile ($N = 80$)
(a) $0 \leq s \leq 0.01$.

(a-2) Behavior of Err_N

(b-1) Solution profile ($N = 80$)
(b) $0.01 \leq s \leq 0.0109$.

(b-2) Behavior of Err_N
(c-1) Solution profile \((N = 80)\) \(0 \leq s \leq 0.0109\).

Fig. 5. Numerical results by SCM \((\beta = 1, \alpha = 100)\).

(ii) In the case of \(\beta = 10^{-8}\).

Numerical results for \(\alpha = 1\) by FDM±EE are shown in Fig. 6. Fig. 6(a) with \(\Delta s = \text{5} \times 10^{-4}\) suggests the global solution. From Fig. 6(b) values of solutions at \(s = 1\) \((T = \infty)\) converge to 0 as \(\Delta s\) becomes small. Thus, the solution profile in Fig. 6(a) is not precise. The solution profile with \(\Delta s = 10^{-7}\) in Fig. 6(c) may be precise and it suggests the existence of the global decreasing solution. In Fig. 6(c) the view angle is different from that in Fig. 6(a).

(a) Solution profile \((\Delta s = \text{5} \times 10^{-4})\).

(b) Behavior of \(\max_{0 \leq i \leq N_x} |\tilde{u}(1, x_i)|, x_i = i\Delta x\).
Distinction between Blow-up and Global Solutions

(c) Solution profile \(\Delta s = 10^{-7} \).

Fig. 6. Solution profiles by FDM⊕EE(\(\beta = 10^{-8}, \alpha = 1, 0 \leq s \leq 1 \)).

For more precise numerical computation SCM is applied in divided intervals for
\(0 \leq s < 1 \) referring rough numerical results by FDM⊕EE in Fig.6. Numerical
results are shown in Fig.7. Solution profiles for \(0 \leq s \leq 0.9999 \) by SCM in
Figs.7(a-1),(a-3) are reliable because Figs.7(a-2),(a-4) show exponential
convergence in each interval. For patching data across the interval CGL points are
used on s. Fig.7(b-1) shows the rough solution profile for \(0.9999 \leq s \leq 1 \) by
FDM⊕EE. From Fig.7(b-1) the solution is smooth for \(0.9999 \leq s \leq 0.999999 \).
Then, SCM is applied in this interval and it gives the solution profile in Fig.7(b-2)
which is reliable due to exponential convergence in this interval(Fig.7(b-3)).
Rough numerical computation for \(0.999999 \leq s \leq 1 \) by FDM⊕EE is shown in
Fig.7(c-1). Multiple precision is used because double precision induces oscillation.
Referring this solution profile SCM in multiple precision is applied in
divided intervals for \(0.999999 \leq s \leq 1 \) (Figs.7(c-2)~(c-5)). Values of solutions
at \(s = 1 \) in Fig.7(c-6) show the existence of the global decreasing solution for
\(\beta = 10^{-8}, \alpha = 1 \). Fig.7(d) is obtained by joining Figs.7(a)~(c).

(a-1) Solution profile by SCM
(\(0 \leq s \leq 0.99, \ N = 80 \)).

(a-2) Behavior of \(Err_N \)
(\(0 \leq s \leq 0.99 \)).
(a-3) Solution profile by SCM
\((0.99 \leq s \leq 0.9999, \ N = 80)\).

(a-4) Behavior of \(\text{Err}_N\)
\((0.99 \leq s \leq 0.9999)\).

(b-1) Solution profile by FDM+EE
\((0.9999 \leq s \leq 1, \ \Delta s = 5 \times 10^{-8})\).

(b-2) Solution profile by SCM
\((0.9999 \leq s \leq 0.99999, \ N = 80)\).

(b-3) Behavior of \(\text{Err}_N\)
\((0.9999 \leq s \leq 0.999999)\).
Distinction between Blow-up and Global Solutions

(c-1) Solution profile by FDM@EE($0.999999 \leq s \leq 1$, $\Delta s = 5 \times 10^{-10}$, 200digits).

(c-2) Solution profile by SCM ($0.999999 \leq s \leq 0.999999995$, $N = 80$, 50digits).

(c-3) Behavior of Err_N ($0.999999 \leq s \leq 0.999999995$).

(c-4) Solution profile by SCM ($0.99999995 \leq s \leq 1$, $N = 80$, 50digits).

(c-5) Behavior of Err_N ($0.99999995 \leq s \leq 1$).
(c-6) Behavior of $\max_{0 \leq i \leq N_x} |\hat{u}(1, x_i)|$, x_i: CGL points.

(d-1) Solution profile by SCM
(0 \leq s \leq 1).

(d-2) Behavior of Err_N
(0 \leq s \leq 1).

Fig. 7. Numerical results($\beta = 10^{-8}$, $\alpha = 1$).

Numerical results for $\alpha = 100$ by FDM±EE are shown in Fig.8. Fig.8(a) is obtained with $\Delta s = 5 \times 10^{-4}$ which is not so small and it suggests that the solution is global. However, Fig.8(b) shows that the value of the solution at $s = 1(T = \infty)$ grows as Δs becomes small. Fig.8(c) shows the solution profile with $\Delta s = 10^{-6}$ and it suggests the existence of the blow-up solution.
Distinction between Blow-up and Global Solutions

(a) Solution profile ($\Delta s = 5 \times 10^{-4}$).
(b) Behavior of $\max_{0 \leq i \leq N_x} \max_{0 \leq s \leq N_x} |\bar{u}(1, x_i)|$.

(c) Solution profile ($\Delta s = 10^{-6}$).

Fig. 8. Solution profiles by FDM⊕EE ($\beta = 10^{-8}$, $\alpha = 100$, $0 \leq s \leq 1$).

For more precise numerical computation SCM is applied in divided intervals for $0 \leq s < 1$ referring rough numerical results by FDM⊕EE in Fig.8. Numerical results are shown in Fig.9. The procedure is same as in Fig.7. Solution profiles for $0 \leq s \leq 0.99999954$ by SCM in Figs.9(a-1, 3, 5, 7, 9) are reliable because Figs.9(a-2, 4, 6, 8, 10) show exponential convergence in each interval. Fig.9(b) is obtained by joining Fig.9(a). Here, $s = 0.99999954$ corresponds to $\tau = 0.10869563 \times 10^7$. This means that numerical computation about the blow-up time is satisfactory.
(a-1) Solution profile by SCM
\(0 \leq s \leq 0.99, \ N = 80\).

(a-2) Behavior of \(Err_N\)
\(0 \leq s \leq 0.99\).

(a-3) Solution profile by SCM
\(0.99 \leq s \leq 0.9999, \ N = 80\).

(a-4) Behavior of \(Err_N\)
\(0.99 \leq s \leq 0.9999\).

(a-5) Solution profile by SCM
\(0.9999 \leq s \leq 0.999995, \ N = 80\).

(a-6) Behavior of \(Err_N\)
\(0.9999 \leq s \leq 0.999995\).
Fig. 9. Numerical results ($\beta = 10^{-8}$, $\alpha = 100$).
(iii) Blow-up time and complex Newton method

Former numerical methods[9, 14] for computing the blow-up time used the adaptive control on the time increment depending on the solution. From the view point of the solution profile we may propose the different idea for computing the blow-up time as follows. The profile of the blow-up solution has singularity in the bounded domain. On the other hand, the numerical method SCM determines the solution profile and it is very sensitive to singularity even if singularity exists outside the domain[15]. These suggest that SCM can feel the blow-up time as singularity. Together with numerical continuation[11], SCM may offer a new approach for computing the blow-up time.

The solutions of problems considered here do not exist beyond the blow-up time[1]. This suggests that SCM fails in the time-space domain including the blow-up time. Problem 2 with $\beta = 1$, $\alpha = 100$ has the blow-up time $\tau_b \approx 0.0109[9]$. In the time-space domain as $0 \leq \tau \leq 0.013$ discretized equations by low order SCM ($N_x = N_s = 4$) can be solved by Newton method. The solution profile is shown in Fig.10(a). On the other hand, discretized equations by higher order SCM cannot be solved by Newton method. If Newton method does not converge it gives apprehension rather than no information. Thus, application of complex Newton method is considered. It works well and it gives the solution profiles as Fig.10(b). From these numerical results and Fig.5(c) the blow-up time τ_b of Problem 2 with $\beta = 1$, $\alpha = 100$ is estimated as $0.010901\cdots \leq \tau_b \leq 0.013$. It is interesting that estimation from above is numerically obtained.

(a) Real Newton method, $N_x = N_s = 4$.

\[\begin{array}{c}
\text{\(\hat{u}\)} \\
\text{\(x\)} \\
\text{\(\tau\)}
\end{array}\]
3 conclusion

In the paper a numerical method for distinction between blow-up and global solutions is proposed. It consists of finite difference method, explicit Euler method, spectral collocation method, bounding transform, Newton method and multiple precision arithmetic. Our method is applied to a famous one-dimensional nonlinear heat equation. Numerical results are satisfactory. Moreover, the blow-up time is estimated from above in some case. In the paper complex Newton method is also used. Its new applicability is our future work.

Acknowledgement

This work was partially supported by Grant-in-Aid for Scientific Research (Nos. 16340029, 18340045, 18654023, 19340022).

References

Information from Journal of Mathematics, The University of Tokushima

(徳島大学数学紀要からのお知らせ)

Transfer of public transmission rights

The editorial committee of Journal of Mathematics, The University of Tokushima would like to ask all authors of “Journal of Mathematics, Tokushima University” from Vol.1 (1967) to Vol.28 (1994) to transfer the public transmission rights of his/her papers partially to the Department of Mathematical and Natural Sciences, Faculty of Integrated Arts and Sciences and the Department of Mathematics, Faculty of Engineering of Tokushima University in order to meet various demands for electronic access in the future. More precisely, we would like each author to agree the following two items.

1. To let her/his article to be accessible from internet at the homepage of The National Institute of Information’s Nii Scholarly and Academic Information Navigator (CiNii).

2. To let the Department of Mathematical and Natural Sciences, Faculty of Integrated Arts and Sciences and the Department of Mathematics, Faculty of Engineering of Tokushima University authorize a third party to share the same public transmission rights as in the item 1.

We note that “Journal of Mathematics, Tokushima University” was published from 1967 to 2000. The new series “Journal of Mathematics, The University of Tokushima” started in 2001 and the volume number of new series succeeds to that of former series.

From 2004, Vol.29 (1995)–Vol.34 (2000) of former series and Vol.35 (2001)–Vol.37 (2003) of new series can be available from internet at (CiNii). Moreover we have been asking the authors of new series to respond (positive or negative) agreement for online publication of their papers, and so far we have received only positive answers. Thus the volumes Vol.39 (2005)-Vol.41 (2007) can be freely accessible at the homepage of the Department of Mathematical and Natural Science, Faculty of Integrated
Arts and Sciences. If however, you disagree some of your paper(s) (Vol.1–Vol.34) to be published online, please let us know in writing. Once we confirm that you are the holder of the copyright of the paper and do not consent to have it available online, we will ask (CiNii) to make the paper(s) unavailable at (CiNii).

Thank you for your attention.

Address: Department of Mathematical and Natural Sciences, Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502 JAPAN.
平成20年12月15日 印 刷
平成20年12月26日 発 行

発 行 者 徳島大学 数理科学部 数理科学教室

編 集 委 員 片 山 真 一

印 刷 所 鳴門市撫養町黒崎字松島262番地
有限会社 八 木 印 刷 所