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Abstract

It is well known that Gauss has found the first complete proof of
quadratic reciprocity laws in [2] (1801) and many different proofs
for quadratic reciprocity laws of Legendre symbols have been pub-
lished after then (see for example Appendix B of Lemmermeyer’s
text [11]). In this paper, we shall write down a visual proof of
quadratic reciprocity laws for Jacobi symbols depending on Scher-
ing’s generalization of Gauss’s lemma.

2000 Mathematics Subject Classification. Primary 11A15; Sec-
ondary 11A07

Introduction

As we have remarked in the above abstract, it was Gauss who firstly gave a
complete proof of quadratic reciprocity laws in [2] (1801). He has published 6

1



different proofs, and two more unpublished proofs (see Werke II [4] 233-234).
It is also remarked that there have been published over 200 proofs for quadratic
reciprocity laws of Legendre symbols after Gauss’s first proof. We also note that
Gauss has already extended quadratic reciprocity laws for prime values p, q to
composite values in [2] art 133, implicitly. On the other hand, the definition
of Jacobi symbol

(m

n

)
for an odd positive integer n was firstly introduced in

Jacobi’s paper [6] in 1837 as follows:
(m

n

)
=

(
m

p1

)(
m

p2

)
· · ·

(
m

pr

)
,

where n is decomposed into odd primes n = p1p2 · · · pr. This definition does not
suggest any relation to the number of the integer points in certain regions as in
the case of Legendre symbols. It was 1883, E. Schering has published a proof of
Gauss’s lemma for the odd positive integer n, in which he has shown a relation
between the Jacobi symbols and the number of lattice points in some region.
Therefore one can easily see any proof depending on Gauss’s lemma for prime
values which works for Legendre symbols also works for Jacobi symbols. In his
master thesis [10], the first author has shown that Takagi’s proof for quadratic
reciprocity laws for Legendre symbols also works for quadratic reciprocity laws
of Jacobi symbols. Though it is only a slight modification of Takagi’s proof,
we could not find any article which write down these procedures explicitly.
Therefore we have decided to write down these procedures here.

Let n(> 1) be any odd positive integer. Let S be the set of all the half
system mod n. Let (Z/nZ)× be the reduced residue class group mod n. Then
the group (Z/nZ)× acts on S in a natural way.

In section 1, we shall investigate fundamental properties of the action of
(Z/nZ)× on the set of all the half systems S. In section 2, we shall recall
Schering’s proof of generalized Gauss’s lemma. In section 3, we shall give a
visual proof of Jacobi symbols which is a variation of Takagi’s proof of quadratic
reciprocity laws of Legendre symbols. Though these procedures are well known
for specialists it will be of some interest, because, as we noticed as above, the
article writing these procedures explicitly seems very rare in these days.

1. Properties of Half Systems

Let m,n be odd positive integers. In this section, we shall study fundamental
properties of half systems. We shall abbreviate the residue class (a mod n) by
a. We shall denote n1 = (n− 1)/2. Then the usual Gauss’s half system mod n
H0 is defined by putting

H0 = {1, 2, . . . , n1 = (n− 1)/2}.
Let (Z/nZ)× be the reduced residue class group mod n. Then (Z/nZ)× acts
on Z/nZ as follows.



For arbitrary a ∈ (Z/nZ)× and any subset X ⊂ Z/nZ, we denote aX =
{ax |x ∈ X}. We note that 0 is stable under the action of (Z/nZ)×. We shall
denote (Z/nZ)×−orbit Z/nZ − 0 by F (n). Then the number of elements in
Gauss’s half system H0 is exactly the half of the number of elements in F (n)
and satisfy the following properties:

F (n) = H0 ∪ −H0, and H0 ∩ −H0 = ∅.

One can generalize the definition of half system mod n as follows. The set
H = {a1, a2, . . . , an1} satisfies that every a(6≡ 0 mod n) is congruent to exactly
one of aj or −aj . Thus the number of possible H ∈ S is 2n1 and every half
system H satisfies

F (n) = H ∪ −H and H ∩ −H = ∅.

Now we shall consider the action (Z/nZ)× on F (n) and define a (Z/nZ)×

orbit for any positive divisor d of n as follows

F (n, d) = {a 6= 0 | (a, n) = n/d},

where (a, n) denotes the greatest common divisor of a and n. We note that
F (n) decomposes into the following disjoint union

F (n) =
⋃

d|n
F (n, d).

For any half system H mod n, we shall define H(n, d) by putting

H(n, d) = H ∩ F (n, d).

Then H decomposes into the disjoint union as follows:

H =
⋃

d|n
H(n, d).

Now we shall define the number µH(a) (or simply µH(a)) and µH(n,d)(a)
(or simply µH(n,d)(a)) by putting

µH(a) = #{aH ∩ −H)},

µH(n,d)(a) = #{aH(n, d) ∩ −H(n, d)}.
From the above decomposition H =

⋃

d|n
H(n, d), we have

µH(a) =
∑

d|n
µH(n,d)(a).



In the next section, we shall show

µH1(a) ≡ µH2(a) mod 2,

for any half systems H1 and H2. This fact plays an important role in the
generalization of Gauss’s lemma for an odd positive integer n. We note that,
for any a ∈ (Z/nZ)× and for any half system H mod n, aH is also a half
system mod n. Thus we can consider the reduced residue class group (Z/nZ)×

acts on the set of half systems S. We note the number µH(a) is the number of
elements in the intersection of two half systems aH and −H.

More generally, for any half systems H1 and H2, we shall define the number
µ(H1,H2) by putting

µ(H1,H2) = #{H1 ∩H2}.
In the following, let us consider the elementary properties of the distribution
of the numbers µ(H1,H2). For any a with (a, n) = 1, we know µ(aH1, aH2) =
µ(H1,H2). Thus we have shown that the above numbers satisfy

µH(a) = µ(aH,−H) = µ(H,−aH).

Let M be the arithmetic mean of µ(H1,H2), that is,

M =
∑

µ(H1, H2)
22n1

,

where H1,H2 run all of the half systems H1,H2 ∈ S,

Proposition 1. With the above notation, we have

M =
n− 1

4
.

Proof. There are 22n1 pairs of H1 and H2 in S. Consider the case when
H1 ∩ H2 is the set {x1, x2, . . . , xk}. Then k varies from 0 to n1 and one can
express H1 and H2 as follows:

H1 = {x1, x2, . . . , xk} ∪ {y1, . . . , yn1−k},
and

H2 = {x1, x2, . . . , xk} ∪ {−y1, . . . ,−yn1−k}.
Hence there are(

n1

k

)
choices of {x1, x2, . . . , xk} from {1, . . . , n1}

and



2k choices of the signs of xi,
and

2n1−k choices of the signs of yj .
Therefore there are

((
n1

k

)
· 2k

)
· 2n1−k =

(
n1

k

)
· 2n1

pairs of H1,H2 with µ(H1,H2) = k.
Finally we have

M =
∑

µ(H1,H2)
22n1

=
1

2n1
×

(
n1∑

k=0

k ·
(

n1

k

))

=
1

2n1
× n12n1−1 =

n1

2
=

n− 1
4

.

Now consider the special half systems of the form aH. Let H be any fixed
half system and m(H) be the mean value of the values of {µ(H, aH) | a ∈
(Z/nZ)×}. Then we have

m(H) =
∑

a µH(a)
φ(n)

,

where a runs all of the representatives of the reduced residue class group
(Z/nZ)×. Here φ(n) is the Euler function and satisfies φ(n) = #{(Z/nZ)×}.

Proposition 2. With the above notation, we have

m(H) =
n− 1

4
.

Proof. For any a, −a is also a residue class such that −a ∈ (Z/nZ)×.
Moreover H decomposes into two disjoint union as H = (H∩aH)∪(H∩−aH),

which implies that the mean value m(H) =
n− 1

4
for any half system H.

Remark 1. From this proposition and the fact µH1(a) ≡ µH2(a) mod 2,
we see these values don’t depend on the choice of the half systems. Hence one
may expect the values µH1(a) and µH2(a) does not differ so much. But it is
not true in general. We note here that the exact values µH1(a) and µH2(a)
actually depend on the choice of the half systems H1 and H2. To explain this
fact, we shall give here two special examples of half systems as follows.



Example 1. Let n = p be a prime and g be a primitive root mod p. n1

denotes (p − 1)/2 as above. Then it is well known that (Z/pZ)× = 〈g〉 and
gn1 = −1. Since F (p) = {1, g, g2, . . . , g2n1−1} = (Z/pZ)×, we can take a half
system H1 by putting

H1 = {1, g, g2, . . . , gn1−1}.

In the case 0 ≤ k ≤ n1, we see

gkH1 = {gk, gk+1, g2, . . . , gn1+k−1},

and
gkH1 ∩ −H1 = {−1,−g, . . . ,−gk−1}.

Hence we have µH1(g
k) = k for this case.

In the case n1 < k ≤ 2n1 − 1, we shall put k′ = k − n1. Then we see

gkH1 = {gn1gk′ , gn1gk′+1, . . . , gn1gn1+k′−1}.

Since gn1 = −1, we have

gkH1 ∩ −H1 = {−gk′ ,−gk′+1, . . . ,−gn1−1}.

Hence we have µH1(g
k) = n1 − k′ = 2n1 − k for this case.

Thus the exact values of µH1(g
k) is

{µH1(g
k) | 0 ≤ k ≤ p− 2 = 2n1 − 1} = {0, 1, 1, 2, 2, . . . , n1 − 1, n1 − 1, n1}.

Hence we can calculate m(H1) directly by

m(H1) =
∑

µH1(g
k)

φ(p)
=

∑n1
k=0 k +

∑n1−1
k′=1 k′

2n1

=
n2

1

2n1
=

n1

2
=

p− 1
4

.

In this case the variance v(H1) of the distribution of {µH1(a)} is given by

v(H1) =
∑n1

k=0 µH1(g
k)2 +

∑n1−1
k′=1 µH1(g

k′)2

2n1
−m(H1)2

=
∑n1

k=0 k2 +
∑n1−1

k′=1 k′2

2n1
− n2

1

4

=
n1(n1 + 1)(2n1 + 1) + (n1 − 1)n1(2n1 − 1)

12n1
− n2

1

4
=

n2
1 + 2
12

.



Example 2. Assume n = p is a prime congruent to 3 mod 4. Then we can
take a half system H2 = 〈g2〉. Then H2 is a subgroup of index 2 of the cyclic
group (Z/pZ)×. We know (Z/nZ)× = H2 ∪ −H2 is the cosset decomposition
mod H2. For any a with (a, p) = 1, we have

µH2(a) =





0 when
(

a

p

)
= 1,

n1 when
(

a

p

)
= −1.

Thus we can calculate m(H2) directly by

m(H2) =
∑

a µH2(a)
2n1

=
n1(0 + n1)

2n1
=

n1

2
=

p− 1
4

.

In this case, the variance v(H2) of the distribution {µH2(a) | a ∈ (Z/nZ)×} is
given by

v(H2) =
∑

a(µH2(a)−m(H2))2

2n1

= 2n1 × (n1/2)2

2n1
=

n2
1

4
.

2. Schering’s generalization of Gauss’s lemma

We shall begin to study the action (Z/nZ)× on F (n, d) more precisely. Put
m = φ(d). Then, from the definition of F (n, d), F (n, d) can be expressed as

F (n, d) = {(n/d)x1, (n/d)x2, . . . , (n/d)xm},
where xi satifies 1 ≤ xi ≤ d and (xi, d) = 1. Here we denote (xi mod d) by
xi. Since n is odd, the divisor d is also odd. Hence m = φ(d) is always even.
Put m = 2m1. Then we can express the set H(n, d) = H ∩ F (n, d) as follows

H(n, d) = {(n/d)a1, (n/d)a2, . . . , (n/d)am1}.
Here {a1, a2, . . . , am1} is a half system mod d. Take any a such that (a, n) = 1.
Then we have

aF (n, d) = F (n, d) = H(n, d) ∪ −H(n, d).

Hence, for each 1 ≤ i ≤ m1, there exists exactly one j (1 ≤ j ≤ m1) which
satisfies

aai = aj or − aj .



Therefore, we get the following congruence

(aa1)(aa2) · · · (aam1) ≡ (−1)µH(n,d)(a)a1a2 · · · am1 mod d.

Since (a1a2 · · · am1 , d) = 1, we have verified the following proposition.

Proposition 3 (Generalized Euler’s criterion).
For any a such that (a, n) = 1, we have a generalization of Euler’s criterion

(−1)µH(n,d)(a) ≡ aφ(d)/2 mod d.

Remark 2. From this Euler’s criterion, we have shown the parity of
µH(n,d)(a) does not depend on the choice of the half system H.

Remark 3. We note that the special case when n is a prime p and d = 1
in Proposition 3 is the exactly the following case:

a(p−1)/2 ≡ (−1)µH(p,p)(a) =
(

a

p

)
mod p,

which is usual Euler’s criterion for Legendre symbol
(

a

p

)
. We shall denote the

usual Gauss’s half system by H0 = {1, 2, . . . , p−1
2 }. In the following, we shall

simply write µH0(p,p)(a) by µp(a).

Using this generalized Euler’s criterion, we shall show the following gener-
alized Gauss’s lemma, which was firstly proved by Schering [12] (1882).

Gauss’s lemma. Let n be odd positive integer. For any a with (a, n) = 1,
the Jacobi symbol

(a

n

)
satisfies

(a

n

)
= (−1)µH(a),

for any n and any half system mod n H.

We shall show this lemma by proving following two lemmas.

Lemma 1. Suppose (pq)|d, where p 6= q are distinct prime divisors of d.
Then

µH(n,d)(a) ≡ 0 mod 2.



Lemma 2. Suppose pe|n and pe+1 6 |n. Put d = pe. Then we have

µH(n,pe)(a) ≡ µH(n,pe−1)(a) ≡ · · · ≡ µH(n,p)(a) ≡ µp(a) mod 2.

Proofs of Lemma 1 and Lemma 2.
We shall prove Lemma 1 as follows. From the assumption (pq)|d, d decomposes
into d = pe · qf · d1 with p, q are distinct prime divisors and (pq, d1) = 1. There
exists an isomoriphsm of reduced residue class groups:

(Z/dZ)× ∼= (Z/peZ)× × (Z/qfZ)× × (Z/d1Z)×,

where the residue class

(a mod d) ∈ (Z/nZ)×

corresponds to
(a mod pe, a mod qf , a mod d1).

Moreover we have φ(d) = φ(pe)φ(qf )φ(d1) = (pe−1(p− 1))(qf−1(q − 1))φ(d1).
Since p− 1 ≡ q − 1 ≡ 0 mod 2, we have

aφ(d)/2 ≡ (aφ(pe))φ(d1)(φ(qf )/2) ≡ 1 mod pe,

aφ(d)/2 ≡ (aφ(qf ))φ(d1)(φ(pe)/2) ≡ 1 mod qf .

aφ(d)/2 ≡ (aφ(d1)φ(pe))(φ(qf )/2) ≡ 1 mod d1.

Thus aφ(d)/2 ≡ 1 mod d. From Proposition 3, we have (−1)µH(n,d)(a) ≡
1 mod d. Since d ≥ 3, we can conclude (−1)µH(n,d)(a) = 1 for this case, that
is, µH(n,d)(a) ≡ 0 mod 2, which completes the proof of Lemma 1.

Now, we shall prove Lemma 2. Let pe||n as above. In the case d|pe, the
primitive root g mod pe is also the primitive root mod d = pc. Hence we can
take a half system H(n, d) of the following form

H(n, d) = {(n/d)1, (n/d)g, (n/d)g2, . . . , (n/d)gφ(d)/2−1},

where gφ(d)/2 ≡ −1 mod d.
Take any a with (a, n) = 1. Then a can be expressed (a ≡ gr mod pe). We
note that, for any 1 ≤ c ≤ e, (g mod pc) is a generator of the cyclic group
(Z/pcZ)×. r1 denotes the residue of (r mod φ(pc)), where φ(pc) = pc−1(p− 1)
is always even. Hence we have shown:

a ≡ gr ≡ gr1 mod pc,



and
r1 ≡ r mod 2.

In the same way as Example 1, we have

µH(n,d)(a) =

{
r1 for 0 ≤ r1 ≤ φ(d)

2 ,

φ(d)− r1 for φ(d)
2 < r1 < φ(d).

Hence we have

µH(n,pc)(a) ≡ r1 mod 2.

Therefore we can conclude, for any 1 ≤ c ≤ e,

µH(n,pc)(a) ≡ r mod 2.

Since, µH(n,p)(a) = µp(a), we have

µH(n,pe)(a) ≡ µH(n,pe−1)(a) ≡ · · · ≡ µH(p,p)(a) ≡ µp(a) mod 2.

Hence we have shown:
e∑

c=1

µH(n,pc)(a) ≡ eµp(a) mod 2,

which completes the proof of Lemma 2.

Let n be decomposed into primes of the form n = pe1
1 pe2

1 · · · pek

k . Combining
the above two lemmas, we have

µH(a) =
∑

d|n µH(n,d)(a)

≡ ∑
1≤i≤k,1≤ci≤ei

µH(n,pi
ci )(a) mod 2

≡ ∑k
i=1 eiµpi(a) mod 2.

Thus we have shown

(−1)µH(n)(a) =
k∏

i=1

(−1)eiµpi
(a) =

k∏

i=1

((−1)µpi
(a))ei =

k∏

i=1

(
a

pi

)ei

=
(a

n

)
,

which completes the proof of generalized Gauss’s lemma.



3. Takagi’s proof of quadratic reciprocity laws
for Jacobi symbols

In this section, we shall give a visual proof of the quadratic reciprocity
laws of Jacobi symbols. The proof is not new but an explicit visual version of
Takagi’s proof [13] based on Schering’s generalized Gauss’s lemma.

Let n an odd positive integer and a be an integer coprime to n. Let H0 =
{1, 2, . . . , n1 = n−1

2 } be a Gauss’s half system mod n as in section 2. Then the
generalized Gauss’s lemma mod n for half system H0 states that

(a

n

)
= (−1)µH0 (a),

where µH0(a) is the number of x (1 ≤ x ≤ n1 = (n− 1)/2) such that
[ax

n

]
+

1
2

<
ax

n
<

[ax

n

]
+ 1.

Let N(n, a) denote the number of integer points (x, y) lying in the following
parallelogram OABC.

-r

r

6

©©©©©©©©©©©©©©©©©©©©©©

©©©©©©©©©©©©©

r A :
(

n
2 , a

2

)

B :
(

n
2 , a+1

2

)

r

r

x

y
y = a

nx

n
2O

1
2

C

We note that
[ax

n

]
+

1
2

<
ax

n
<

[ax

n

]
+ 1 ⇐⇒ ax

n
<

[ax

n

]
+ 1 <

ax

n
+

1
2
.

Hence we know µH0(a) = N(n, a) and Schering’s generalized Gauss’s lemma
can be written as follows:

Visual version of Gauss’s lemma.
With the above notation, Jacobi symbol

(a

n

)
can be expressed by the number

of integer points in the above parallelogram OABC, that is
(a

n

)
= (−1)N(n,a).



The special cases a = −1 and a = 2 are called the first supplemental law and
the second supplemental law, respectively. From the following parallelograms
OABC, we see

N(n,−1) = #{(x, 0) ∈ OABC} = n1 =
n− 1

2
,

and
N(n, 2) = #{(x, 1) ∈ OABC} =

[n

2

]
−

[n

4

]
,

and obtain the first supplemental law;
(−1

n

)
=

{
1 for n ≡ 1 mod 4,
−1 for n ≡ −1 mod 4,

and the second supplemental law;
(

2
n

)
=

{
1 for n ≡ 1 or −1 mod 8,
−1 for n ≡ 3 or −3 mod 8.

-r

r
6

XXXXXXXXXXXXXXX
y=− x

n

XXXXXXXXXXXXX

r

A :
(

n
2 ,− 1

2

)

Br x

y

n
2O

1
2

C

-r
O

6

x

y

1
2

r

©©©©©©©©©©©©

©©©©©©©©©©

r

r

r

A :
(

n
2 , 1

)y= 2x
n

B

C

Now we shall show a visual version of the quadratic reciprocity law, which is
nothing but the modified proof given by Takagi replacing p, q by n,m. Let
m,n be two distinct odd positive coprime integers. Then the number of integer
points lying in the following parallelograms OABC and OAB′C ′ are N(n,m)
and N(m,n), respectively.

-r

r

6

©©©©©©©©©©©©©©©©©©©©©©

©©©©©©©©©©©©©

r
C ′
©©©©©©©©©©©©©r rA B′

B D

r

r r

rT

m
2

x

y y = m
n x (x = n

my)

n
2O

1
2

C



From the visual version of Gauss’s lemma as above, we know that
(m

n

)( n

m

)
= (−1)N(n,m)+N(m,n).

Let N be the number of integer points in the hexagon OC ′B′DBC. Since there
is no integer point lying in the square AB′DB, we know that

N(n,m) + N(m,n) = N.

One sees that the hexagon OC ′B′DBC is symmetric with respect to the center

T =
(

n + 1
4

,
m + 1

4

)
. Hence we know that the number N is even except for

the center T .
We have the fact:

T is an integer point ⇐⇒ both n and m ≡ 3 mod 4.
Thus N(n, m) + N(m,n) is odd, if and only if both n and m are congruent to
3 mod 4, which completes the proof the following quadratic reciprocity law of
Jacobi symbols:

(m

n

) ( n

m

)
= (−1)

n−1
2 ·m−1

2 .

4. Concluding Remarks

In his paper [8], T. Kubota introduced a new geometrical method for con-
structing class field theory. One of his aim was to establish the Artin’s reci-
procity law directly and then construct class field theory through the Artin’s
reciprocity law. At a first glance, his construction seems very complicated.
But if one restrict Kubota’s geometrical proof to quadratic residues, one can
get a very simple proof of quadratic reciprocity laws. We note that the reader
who interested in the proof can find this simple proof in his ealier paper [7].
The second author has heard from Kubota that his another aim was to find
a way of construction of class field theory as easy to be understood by the
students of elementary schools and junior high schools. We feel Kubota’s proof
for quadratic reciprocity laws in [7] has still difficult points to be understood
by these students. On the contraly, we have generalized the proof of Legendre
symbols to Jacobi symbols. Hence we have avoided the notion of primes. Thus,
if one adopts the definition of Jacobi symbols by the number of integer points
in the above parallelogram, then the key ingredient of our proof is the parity
of the number of integer points in the following point-symmetric region C.



C

qT¶
¶

¶
¶

q
P ′ = (x′, y′)

q
P = (x, y)

We assume the co-ordinates (a, b) of the center T
of the point-symmetric region C satisfies
2a, 2b ∈ Z. Then the symmetric points
P = (x, y) and P ′ = (x′, y′) satisfies
x′ = 2a− x, y′ = 2b− y. Thus we know

(x, y) is an integer point
⇐⇒ (x′y′) is an integer point.

Thus the number of the integer points in this
point-symmetric region is odd if and only if the
center T of the region C is an integer point.
We hope our visual modification of Takagi’s proof

would be of some interest to those young students.
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[ 6 ] C. G. J. Jacobi, Über die Kleistheilung und ihre Anwendung auf die
Zahlentheorie, J. Reine Angew Math., 30, (1837), 127-136; Werke VI,
254-274.

[ 7 ] T. Kubota, Geometry of numbers and class field theory, Sūrikaisekiken-
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