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Abstract
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prescribing the complete system of axioms. Then we prove the uniqueness
and existence theorem of the Jordan measure. This is a new result.
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Introduction

This paper is the part I of the series of papers on the axiomatic method of
measure and integration on the Euclidean space.

In this paper, we define the concept of the d-dimensional Jordan measure
and its uniqueness and existence theorem. Here we assume d ≥ 1. This is a
new result.

A measure is one of the set functions.
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In general, a function is defined by deciding its domain, its range and the
rule of correspondence. Therefore, the set function as a measure is defined by
prescribing the family of sets as its domain, its range and the additivity as the
rule of correspondence.

Especially, the Jordan measure is a completely additive positive measure de-
fined on a finitely additive family of the Jordan measurable sets and a invariant
measure with respect to the group of congruent transformation. Here we say
that the measure on the finitely additive family is completely additive if it is
conditionally completely additive. Namely, the Jordan measure is completely
additive in the sense that it is completely additive if the countable direct sum
of the Jordan measurable sets is also a Jordan measurable set.

Especially, the Jordan measure is a finitely additive measure defined on the
finitely additive family of all Jordan measurable sets.

In this paper, it is the new characterization that we define the Jordan
measure by describing the complete system of axioms.

Further we prove the uniqueness and existence theorem of the Jordan mea-
sure. Thus, the definition of the Jordan measure and its uniqueness and exis-
tence theorem are the new results. We call this the axiomatic method of the
measure and integration.

Until now, we construct the Jordan measure as one of set functions without
defining the concept of the Jordan measure. Then there is one question that
there is or not another measure than the well known Jordan measure. When
we define the Jordan measure by giving the complete system of axioms, we can
prove that there is the unique measure satisfying this system of axioms.

Thereby we know that there is no other Jordan measure than the measure
constructed by Jordan himself. In this point, it is important that the theory
of the Jordan measure is completed.

Here I show my heartfelt gratitude to my wife Mutuko for her help of
typesetting this manuscript.

1 Definition of the Jordan measure

In this section，we define the concept of the Jordan measure. Here we
assume d ≥ 1.

We study the intervals and the blocks of intervals as the fundamental subsets
in the d-dimensional Euclidean space Rd.

We say that an interval I in Rd is the direct product set of the d intervals
of the types

(ai, bi), [ai, bi), (ai, bi], [ai, bi], (i = 1, 2, · · · , d)
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in R. Then we denote the interior of I by the symbol

I◦ = (a1, b1)× (a2, b2)× · · · × (ad, bd).

Then I◦ is an open interval. Further we denote the closure of I by the symbol

I = [a1, b1]× [a2, b2]× · · · × [ad, bd].

Then I is a closed interval. The empty set ϕ is considered as an interval.
If a finite number of intervals I1, I2, · · · , In are mutually disjoint, we say

that the direct sum of them is a block of intervals and denote it as

E =
n∪

p=1

Ip =
n∑

p=1

Ip = I1 + I2 + · · ·+ In.

We call this as the decomposition of the block of intervals.
Now we denote by R the family of all blocks of intervals in Rd.
Then we have the following theorem 1.1.

Theorem 1.1 Let R be the family of all blocks of intervals in Rd. Then
we have the following (1)∼(3):

(1) ϕ ∈ R holds.

(2) If A ∈ R holds, we have

Ac = {x ∈ Rd; x ̸∈ A} ∈ R.

(3) If A, B ∈ R holds, we have A ∪B ∈ R.

Corollary 1.1 Let R be the same as in Theorem 1.1. Then we have the
following (1), (2):

(1) Rd ∈ R holds.

(2) The set obtained by the finite times of operations such as the summation,
the difference or the intersection of some sets in R belongs to R. Here,
the difference A\B of the sets A and B is defined by the relation

A\B = A ∩Bc = {x ∈ Rd; x ∈ A, x ̸∈ B}.

Then we define the Jordan measure space and the Jordan measure in the
following definition 1.1.

Definition 1.1(the Jordan measure) We define that the triplet (Rd, B,
µ) is the d-dimensional Jordan measure space if the family B of sets in the
d-dimensional Euclidean space Rd and the set function µ on B satisfy the
following axioms (I)∼(III):
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(I) R ⊂ B holds.

(II) We have the following (i)∼(iv):

(i) For A ∈ B, we have 0 ≤ µ(A) ≤ ∞.

(ii) If at most countable elements A1, A2, · · · , An, · · · in B are
mutually disjoint and their direct sum A satisfies the condition

A =

(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap ∈ B,

then we have the equality

µ(A) =

(∞)∑
p=1

µ(Ap).

(iii) For I0 = [0, 1]d, we have µ(I0) = 1. Here [0, 1]d denotes the
direct product set of the d closed intervals [0, 1].

(iv) When we define A + x = {y + x; y ∈ A} is the translated set
of a set A ∈ B for a vector x ∈ Rd, then we have A + x ∈ B and
µ(A+ x) = µ(A) holds.

(III) A ∈ B if and only if, for any bounded set E ∈ B, we have the equality

µ∗(A ∩ E) = µ∗(A ∩ E).

Then we have the equality

µ(A) = sup{µ∗(A ∩ E); E ∈ R is bounded}.

Here µ∗ and µ∗ denotes the outer measure and the inner measure re-
spectively which are defined by the measure µ on R obtained by the
restriction of µ on B. Namely, µ∗(A ∩ E) and µ∗(A ∩ E) are defined by
the formulas

µ∗(A ∩ E) = inf{µ(B); B ⊃ A ∩ E, B ∈ R},

µ∗(A ∩ E) = sup{µ(B); A ∩ E ⊃ B, B ∈ R}
respectively.

Then we say that an element in B is a Jordan measurable set and µ is the
d-dimensional Jordan measure.

For simplicity, we call the d-dimensional Jordan measure space and the d-
dimensional Jordan measure as the Jordan measure space and the Jordan
measure respectively.
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Further, we call a Jordan measurable set as a measurable set.
The symbol

(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap

used in the Axiom (II), (ii) denotes the finite or countable sum of the sets Ap,
and the symbol

(∞)∑
p=1

µ(Ap)

denotes the finite or countable sum of the measures µ(Ap). This condition of
Axiom (II), (ii) means that the d-dimensional Jordan measure is a conditionally
completely additive measure.

The d-dimensional Jordan measure considered here is a finitely additive
measure without any condition. But it becomes a conditionally completely
additive measure by virtue of, what is called, the condition of continuity.

By virtue of this condition, we extend the d-dimensional Jordan measure to
the d-dimensional Lebesgue measure. Therefore it is possible to complete the
d-dimensional Jordan measure. In this paper, in the construction of the theory
of the Riemann integral, we do not use this fact afterward.

In the following, we prove the uniqueness and existence theorem of the
d-dimensional Jordan measure in Definition 1.1.

In order to do this, we determine concretely the family B of the Jordan
measurable sets and the Jordan measure µ on Rd.

At first, we study the characterization of the Jordan measurable sets. As the
necessary condition that the set function µ in Definition 1.1 is the d-dimensional
Jordan measure, we determine concretely the value µ(A) of each element A in
B.

Thereby, we determine the family B of the Jordan measurable sets. Then,
we prove that the value of the set function µ determined like that satisfies the
condition of the definition of the d-dimensional measure in Definition 1.1. Thus
we prove the uniqueness and existence of the d-dimensional Jordan measure.

Here we continue to characterize the d-dimensional Jordan measure derived
from Definition 1.1.

2 Definition of the Jordan measure of the blocks
of intervals

We say that the function µ on R which defines a real number µ(A) for a
set A in R is a set function on R.
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By restricting the Jordan measure in Definition 1.1 to the family R of all
blocks of intervals, we have the following concept of the Jordan measure of a
block of intervals.

Definition 2.1 Let R be the same as in Definition 1.1. Then, a set
function µ on R is defined to be the Jordan measure of the blocks of intervals
in Rd if the following (i)∼(iv) hold:

(i) If A ∈ R holds, we have 0 ≤ µ(A) ≤ ∞.

(ii) If at most countable elements A1, A2, · · · , An, · · · in R are mutually
disjoint and the condition

A =

(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap ∈ R

is satisfied, we have the equality

µ(A) =

(∞)∑
p=1

µ(Ap).

(iii) If I0 = [0, 1]d holds, we have µ(I0) = 1.

(iv) If E+x is the set of the translation of a set E ∈ R for a vector x ∈ Rd,
we have E + x ∈ R and the equality µ(E + x) = µ(E).

Then, the value µ(E) of µ at E ∈ R is said to be the Jordan measure of
a block of intervals E.

Remark 2.1 When we define the unit set to be I0 = [0, 1]d in Definition
2.1, (iii), it means that we consider one orthogonal coordinate system in the
d-dimensional Euclidean space.

Corollary 2.1 For the Jordan measure µ of the blocks of intervals in Rd,
we have the following (1)∼(4):

(1) If the elements A1, A2, · · ·An in R are mutually disjoint, the condition

A =
n∪

p=1

Ap =
n∑

p=1

Ap ∈ R

is satisfied and we have the equality

µ(A) =
n∑

p=1

µ(Ap).
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(2) If A ⊃ B holds for A, B ∈ R, we have the inequality

µ(A) ≥ µ(B).

Especially, if µ(A) < ∞ holds, we have the equality

µ(A\B) = µ(A)− µ(B).

Especially we have
µ(ϕ) = 0.

(3) If the condition

A =

(∞)∪
p=1

Ap ∈ R

is satisfied for at most countable elements A1, A2, · · · in R, we have the
inequality

µ(A) ≤
(∞)∑
p=1

µ(Ap).

(4) If at most countable intervals I1, I2, · · · , In, · · · are mutually disjoint,
and the set

I =

(∞)∪
p=1

Ip =

(∞)∑
p=1

Ip

is also an interval, we have the equality

µ(I) =

(∞)∑
p=1

µ(Ip).

3 Proof of the existence theorem of the Jordan
measure of the blocks of intervals

At first, we concretely determine the Jordan measure µ of the blocks of
intervals. Thus we prove the existence theorem of the Jordan measure of the
blocks of intervals.

Here, by the similar way to the existence proof of the Jordan measure of
the blocks of intervals in R, we prove the existence of the Jordan measure of
the blocks of intervals in Rd.

Therefore, we have the following propositions.
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Proposition 3.1 The Jordan measure of the closed intervals [0, 1/n]d

or the intervals obtained by removing its parts or the whole of the boundary is
equal to 1/nd. Here we assume n ≥ 1.

Proposition 3.2 The Jordan measure of a closed interval [0, a1]×[0, a2]×
· · · × [0, ad] or the intervals obtained by removing its parts or the whole of the
boundary is equal to a1a2 · · · ad. Here we assume a1, a2, · · · , ad ≥ 0.

Remark 3.1 When we calculate the limit for the d-dimensional measure
in the proof of Proposition 3.2, we note that we use the conditionally complete
additivity.

Corollary 3.1 If the interval I is the closed interval [a1, b1]× [a2, b2]×
· · · × [ad, bd] or the interval obtained by removing its parts or the whole of the
boundary, the Jordan measure of I is equal to

µ(I) = (b1 − a1)(b2 − a2) · · · (bd − ad).

Here we assume that ai, bi, (i = 1, 2, · · · , d) are real numbers and ai ≤
bi, (i = 1, 2, · · · , d) hold.

Corollary 3.2 The Jordan measure of the unbounded interval I is equal
to the following (1) or (2):

(1) When I is not included in the hyperplane which is parallel to some coor-
dinate axis, we have

µ(I) = ∞.

(2) When I is included in the hyperplane which is parallel to some coordinate
axis, we have

µ(I) = 0.

Proposition 3.3 If a block of intervals E in R is equal to the direct sum

E = I1 + I2 + · · ·+ In (3.1)

of mutually disjoint intervals I1, I2, · · · , In, the Jordan measure µ(E) of E is
equal to

µ(E) = µ(I1) + µ(I2) + · · ·+ µ(In). (3.2)

Then the formula (3.2) does not depend on the way of the decomposition of
E by the mutually disjoint intervals.

Remark 3.2 If a block of intervals E is unbounded, at least one interval
is unbounded in the direct sum decomposition (3.1).
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Then we note that it happens to be µ(E) = ∞ by virtue of Corollary 3.2.

Conversely, we have the following theorem concerning the existence of the
Jordan measure of the blocks of intervals.

Theorem 3.1 We define the set function µ on R in the following:

(i) For a bounded closed interval [a1, b1]×[a2, b2]×· · ·×[ad, bd] or a interval
I obtained by removing the part or the whole of its boundary, we define
µ(I) = (b1 − a1)(b2 − a2) · · · (bd − ad). Here we assume that ai, bi, (i =
1, 2, · · · , d) are some real numbers such as ai ≤ bi, (i = 1, 2, · · · , d)
hold.

(ii) The Jordan measure of a unbounded interval I is defined by the following:

(1◦) When I is not included in a certain hyperplane which is parallel
to a certain coordinate axis, we define

µ(I) = ∞.

(2◦) When I is included in a certain hyperplane which is parallel to a
certain coordinate axis, we define

µ(I) = 0.

(iii) If we decompose a block of intervals A as the direct sum of intervals
I1, I2, · · · , In and denote it as

A = I1 + I2 + · · ·+ In,

we define
µ(A) = µ(I1) + µ(I2) + · · ·+ µ(In).

(iv) If at most countable intervals I1, I2, I3, · · · are mutually disjoint and

I =

(∞)∪
p=1

Ip =

(∞)∑
p=1

Ip

is also an interval, we assume that the relation

µ(I) =

(∞)∑
p=1

µ(Ip)

holds.

Then µ(A) is the Jordan measure of the blocks of intervals.
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Then we note that it happens to be µ(E) = ∞ by virtue of Corollary 3.2.

Conversely, we have the following theorem concerning the existence of the
Jordan measure of the blocks of intervals.

Theorem 3.1 We define the set function µ on R in the following:

(i) For a bounded closed interval [a1, b1]×[a2, b2]×· · ·×[ad, bd] or a interval
I obtained by removing the part or the whole of its boundary, we define
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Then µ(A) is the Jordan measure of the blocks of intervals.
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4 Proof of the existence theorem of the Jordan
measure

In this section, we prove the existence theorem of the Jordan measure.
Here we concretely determine the d-dimensional Jordan measure µ. Thereby

we prove the existence theorem of the d-dimensional Jordan measure.
For that purpose, we prepare the following.

Definition 4.1 For an arbitrary subset B of Rd, we define that

µ∗(B) = inf{µ(A); B ⊂ A, A ∈ R},

µ∗(B) = sup{µ(A); A ⊂ B, A ∈ R}.

are the outer measure and the inner measure of B respectively.

Corollary 4.1 For A ∈ R, we have the following equality

µ∗(A) = µ∗(A) = µ(A).

Here the third side denote the Jordan measure of a block of intervals in the
sense of Theorem 3.1.

By virtue of the definitions of the outer measure and the inner measure, we
have the following three propositions immediately.

In the following, let B, B1, B2 be some subsets of Rd.

Proposition 4.1 We have the inequality

0 ≤ µ∗(A) ≤ µ∗(B) ≤ ∞.

Especially, we have the equality

µ∗(ϕ) = µ∗(ϕ) = 0.

Proposition 4.2 If B1 ⊂ B2 holds, we have the following (1) and (2):

(1) µ∗(B1) ≤ µ∗(B2). (2) µ∗(B1) ≤ µ∗(B2).

Proposition 4.3 We have the following inequality

µ∗(B1 ∪B2) ≤ µ∗(B1) + µ∗(B2).
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Proposition 4.4 If we put

A =

(∞)∪
p=1

Ap

for at most countable subsets A1, A2, A3, · · · of Rd, we have the inequality

µ∗(A) ≤
(∞)∑
p=1

µ∗(Ap).

Proposition 4.5 If at most countable subsets A1, A2, A3, · · · of Rd are
mutually disjoint and we put

A =

(∞)∑
p=1

Ap,

we have the inequality

µ∗(A) ≥
(∞)∑
p=1

µ∗(Ap).

Proposition 4.6 If B is an arbitrary subset B in Rd, we have the equality

µ∗(B ∩ E) = µ(E)− µ∗(Bc ∩ E)

for an arbitrary bounded set E ∈ R. Here µ denote the Jordan measure of the
blocks of intervals defined in Theorem 3.1.

Proposition 4.7 Let B be an arbitrary subset of Rd. If E1, E2, · · · are
some sequence of bounded blocks of intervals of Rd which satisfy the conditions

E1 ⊂ E2 ⊂ · · · ,
∞∪

n=1

En = Rd.

Then we have the equalities

µ∗(B) = lim
n→∞

µ∗(B ∩ En), (4.5)

µ∗(B) = lim
n→∞

µ∗(B ∩ En). (4.6)

11
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Definition 4.2 We say that an arbitrary subset B of Rd is measurable
if we have the equality µ∗(B ∩ E) = µ∗(B ∩ E) for an arbitrary bounded set
E ∈ R. Then we say that

µ(B) = sup{µ∗(B ∩ E); E is an arbitrary bounded block of intervals}

is the Jordan measure of B.

Remark 4.1 The measurability of a subset B of Rd means that, for any
bounded part of B, the outer measure µ∗(B ∩ E) which is the approximation
of the measures of bounded blocks of intervals from outer side and the inner
measure µ∗(B ∩ E) which is the approximation of the measures of bounded
blocks of intervals from inner side are both identical.

Corollary 4.2 If B is an arbitrary measurable set of Rd, we have the
equalities

µ∗(B) = µ∗(B) = µ(B).

By virtue of Corollary 4.1, the concept of the Jordan measure of the mea-
surable sets are identical to the concept of the Jordan measure of the blocks of
intervals for any blocks of intervals.

Now we show some examples of non measurable sets.

Example 4.1 The set

B = [0, 1]d ∪ {the rational points in [0, 1]d−1 × [1, 2]}

is not measurable. Here a rational point means a point with the coordinates
which are the rational numbers.

Proof Because we have the relation

µ∗(B) = 2 ̸= µ∗(B) = 1

for the set B, B is not measurable. //

Example 4.2 The set

B = {the rational points in [0, 1]d} ∪ ([0, 1]d−1 × [1, ∞])

is not measurable.

Proof We consider one bounded part

B ∩ ([0, 1]d−1 × [0, 2]) = {the rational points in [0, 1]d}
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∪([0, 1]d−1 × [1, 2]).

By the similar way to Example 4.1, we have the relation

µ∗(B ∩ ([0, 1]d−1 × [0, 2])) = 2 ̸= µ∗(B ∩ ([0, 1]d−1 × [0, 2])) = 1.

Thus B does not satisfy the condition of Definition 4.2. Therefore B is not
measurable. //

Remark 4.2 For the set B in Example 4.2, we have the equalities

µ∗(B) = µ∗(B) = ∞.

Although the outer measure and the inner measure of B are identical, B is an
example which is not said to be measurable only by this condition.

This is the reason why the condition that the outer measure and the inner
measure of every bounded part of B is the condition of measurability.

In the following, we show that the set function µ defined in Definition 4.2
satisfies the condition of the Jordan measure in Definition 1.1.

Theorem 4.1 Let B be an arbitrary subset of Rd. Then B is measurable
if and only if we have the equality

µ∗(B ∩ E) + µ∗(Bc ∩ E) = µ(E)

for an arbitrary E ∈ R.

Theorem 4.2 Let B be an arbitrary subset of Rd. Then B is measurable
if and only if we have the equality

µ∗(B ∩A) + µ∗(Bc ∩A) = µ∗(A)

for an arbitrary subset A of Rd.

Theorem 4.3 Let B be an arbitrary subset of Rd. Then B is measurable
if and only if we have the equality

µ∗(A1 +A2) = µ∗(A1) + µ∗(A2)

for arbitrary two subsets A1, A2 such that A1 ⊂ B and A2 ⊂ Bc hold.

Theorem 4.4 Let Ḃ be the boundary of an arbitrary bounded subset B of
Rd. Then we have the equality

µ∗(Ḃ) = µ∗(B)− µ∗(B).

Then we have the following.
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Theorem 4.5 Let B be an arbitrary subset of Rd. Then B is measurable
if and only if we have the equality

µ∗(Ḃ) = 0

for the boundary Ḃ of B.

Because an arbitrary subset in Rd with the outer measure 0 has necessarily
the Jordan measure 0, we have the following.

Theorem 4.6 An arbitrary subset of Rd is measurable if and only if its
boundary has the Jordan measure 0.

Theorem 4.7 Let B be the family of all measurable subsets of Rd. Then
B has the following (1)∼(3):

(1) R ⊂ B holds. Especially we have ϕ ∈ B.

(2) If A ∈ B holds, we have Ac ∈ B.

(3) If A, B ∈ B holds, we have A ∪B ∈ B.

Corollary 4.3 Let B be the same as in Theorem 4.7. Then we have the
following (1), (2):

(1) Rd ∈ B holds.

(2) The sets obtained by the finite times of operations such as the summation,
the difference and the intersection of sets in B belong to B.

Proposition 4.8 If a bounded subset B in Rd has the boundary which is
composed of the finite number of C1-hypersurfaces, then B is measurable.

Theorem 4.8 The property that a certain subset in Rd is measurable
does not depend on the choice of an orthogonal coordinate system. Further,
the Jordan measure of a measurable set does not depend on the choice of an
orthogonal coordinate system.

Theorem 4.9 If two measurable sets in Rd are congruent, their Jordan
measures are equal.

Theorem 4.10 If A, B ∈ B and A ∩B = ϕ hold, we have the equality

µ(A ∪B) = µ(A) + µ(B).
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Corollary 4.4 If at most countable sets A1, A2, A3, · · · in B are mutu-
ally disjoint and they satisfy the condition

A =

(∞)∪
p=1

Ap =

(∞)∑
p=1

Ap ∈ B,

we have the equality

µ(A) =

(∞)∑
p=1

µ(Ap).

By virtue of the considerations in the above, we have the following existence
theorem of the Jordan measure.

Theorem 4.11(Uniqueness and existence theorem) There exists only
one Jordan measure space (Rd, B, µ) on Rd. Here B denotes the family of
all measurable sets on Rd and the set function µ defined on B denotes the
d-dimensional Jordan measure.
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